S DRAFT &

SOUTHERN SANDOVAL COUNTY, NEW MEXICO WATER AVAILABILITY ASSESSMENT FOR APACHE MESA SUBDIVISION,

by

Annie M. McCoy

Jason T. Lennane

Roger L. Peery

JOHN SHOMAKER & ASSOCIATES, INC.
Water-Resource and Environmental Consultants
2703 Broadbent Parkway NE, Suite D
Albuquerque, New Mexico 87107

prepared for

Mark Goodwin & Associates Albuquerque, New Mexico

January 7, 2004 50, 63

DRAFT

SOUTHERN SANDOVAL COUNTY, NEW MEXICO WATER AVAILABILITY ASSESSMENT FOR APACHE MESA SUBDIVISION,

ģ

Annie M. McCoy

Jason T. Lennane Roger L. Peery

JOHN SHOMAKER & ASSOCIATES, INC. Water-Resource and Environmental Consultants 2703 Broadbent Parkway NE, Suite D Albuquerque, New Mexico 87107

prepared for

Mark Goodwin & Associates Albuquerque, New Mexico

page
INTRODUCTION
OBJECTIVES
GEOHYDROLOGY2
AQUIFER PUMPING TEST AND WATER-QUALITY SAMPLING RESULTS FOR APACHE MESA TEST WELL RG-813384
Drilling, Completion, and Development of RG-81338
Constant-Rate Pumping Test
GROUND-WATER AVAILABILITY9
Ground Water in Storage 10
on Aquifer Model to Assess Impacts of Pumping Apache Mesa Subdivision Wells
₩:
at Subdivision Site Boundaries as a Result of Pumping Apache
a Subdivision Wells on Surrounding Wellsv Model to Assess Long-term Impacts of Pumping Apache Mesa Subdivision
Hydrographs to Assess Long-term Impacts of Pumping Surrounding Wells on Aquifer at Apache Mesa Subdivision
Impact of Pumping Apache Mesa Subdivision Wells on Nearby Springs and Streams 16
FFFRENCES

TABLES

	page
Table 1	Table 1. Results from the step-drawdown pumping test performed on November 14, 2003, Apache Mesa Subdivision, southern Sandoval County, New Mexico
Table 2	Fable 2. Results of the Bierschenk analysis of step-drawdown pumping test results, Apache Mesa Subdivision, southern Sandoval County, New Mexico5
Table 3	[able 3. Summary of the constant-rate aquifer pumping test at RG-81338, Apache Mesa Subdivision, southern Sandoval County, New Mexico
Table 4	Cable 4. Results of the water-quality laboratory analysis, sampled from RG-81338 on November 18, 2003, Apache Mesa Subdivision, southern Sandoval County, New Mexico
able 5.	able 5. Estimated recharge, Apache Mesa Subdivision, southern Sandoval County, New 10
able 6.	able 6. Ground water in storage, Apache Mesa Subdivision, southern Sandoval County,
able 7.	able 7. Hydraulic properties assigned to the aquifers beneath the Apache Mesa Subdivision, southern Sandoval County, New Mexico
able 8.	able 8. Model inputs for the aquifers beneath the Apache Mesa Subdivision, southern Sandoval County, New Mexico
able 9.	able 9. Calculated 100-year pumping level in test well RG-81338 completed and test-pumped in the Apache Mesa Subdivision when pumping 0.60 acre-feet per year 14

ILLUSTRATIONS

(follow text)

- Figure 1. Topographic map of the Apache Mesa Subdivision and surrounding area, showing wells within a 1-mile radius of the subdivision, southern Sandoval County, New
- Figure 2. Geologic map of the Apache Mesa Subdivision and surrounding area (Connell et al., southern Sandoval County, New Mexico. 1999), showing line of section and hydrogeologic zone B2a of Johnson (2000), See Figure 3 for explanation of map units.
- Figure 3. West-east geologic cross-section A-A', Apache Mesa Subdivision, southern Sandoval County, New Mexico.
- Figure 4. Depth to ground water contours showing hydrogeologic zone B2a of Johnson (2000), Apache Mesa Subdivision and surrounding area, southern Sandoval County,
- Figure 5. Ground-water level elevation contours showing hydrogeologic zone B2a of Johnson New Mexico. (2000), Apache Mesa Subdivision and surrounding area, southern Sandoval County,
- Figure 6. Plot of drawdown and recovery data from the step-drawdown pumping test southern Sandoval County, New Mexico. performed on well RG-81338 on November 14, 2003, Apache Mesa Subdivision,
- Figure 7. Semi-logarithmic plot of drawdown and recovery data from the 24-hour constant-2003, Apache Mesa Subdivision, southern Sandoval County, New Mexico. rate pumping test performed on well RG-81338 between November 17 and 19,
- Figure 8. Ground-water flow model grid and domains with varying hydraulic properties, Apache Mesa Subdivision, southern Sandoval County, New Mexico.
- Figure 9. Ground-water flow model grid showing estimated 100-year drawdown, Apache Mesa Subdivision, southern Sandoval County, New Mexico.
- Figure 10. Ground-water hydrograph from well within 1 mile of the Apache Mesa

APPENDICES

(follow illustrations)

- Appendix A. Well record and well completion diagram for well RG-81338 in the Apache Mesa Subdivision
- Appendix B. Selected drawdown and recovery measurements taken during the 24-hour constant-rate pumping test at well RG-81338
- Appendix C. Laboratory report for water-quality analyses and chain-of-custody forms, and NMED/DWB drinking water standards.
- Appendix D. Summary of wells within a 1-mile radius of the Apache Mesa Subdivision that are on file with the NMOSE.

SOUTHERN SANDOVAL COUNTY, NEW MEXICO WATER AVAILABILITY ASSESSMENT FOR APACHE MESA SUBDIVISION

INTRODUCTION

Engineer (NMOSE) 72-12-1 NMSA for each lot in the subdivision. Subdivision. about 1 acre in size. Mexico, Subdivision Ordinance. Subdivision is classified as a Type II subdivision according to the Sandoval County, New quarter of Township 13 North, Range 4 East, Section 35 (Figure 1). The Apache Mesa (JSAI) has performed a hydrogeologic investigation at the proposed Apache Mesa At the request of Mark Goodwin and Associates Inc., John Shomaker & Associates, Individual domestic wells will be drilled under New Mexico Office of the State The proposed subdivision is located along Highway 165, in the southwest Ground water will be used to provide all water for the Apache Mesa The Apache Mesa Subdivision will consist of 35 lots that are

OBJECTIVES

permitted under NMOSE 72-12-1 NMSA subdivisions in which the County, New Mexico, Land Subdivision Regulations, for a geohydrologic report for proposed This report follows the guidelines set forth in Section 8.6 and Appendix A of the Sandoval regulations included in the Sandoval County, New Mexico, Land Subdivision Regulations. for the Apache Mesa Subdivision and whether or not the ground water available at the Apache December 2003 was to assess the potential for completing domestic ground-water supply wells Subdivision can sustain a 100-year supply in accordance with the hydrogeologic The objective of the hydrogeologic investigation conducted between September and source of water will be individual or shared domestic wells,

GEOHYDROLOGY

characteristics. These units are presented below. has Figure 2 presents a geologic map of the Apache Mesa Subdivision and surrounding area, and Figure 3 presents a west-east geologic cross-section of the subdivision. The Santa Fe Group primary basin fill rocks are the Quaternary- to Tertiary-age sediments of the Santa Fe Group. apart) along the Rio Grande Rift. Albuquerque Basin is a north-south trending basin related to the extensional rifting (pulling The subdivision site is located along the eastern margin of the Albuquerque Basin. The separated into three mapable units Within the region surrounding the subdivision site, the (Johnson, 2000) based on deposition

- most productive aquifers in the Albuquerque Basin. mapped at the surface to the north and west of the subdivision site and is one of the stream channel and floodplain sediments of the ancestral Rio Grande. interbedded between the sands and gravels. sands and gravels that are well sorted and weakly cemented. The Upper Santa Fe Group axial river deposits consist of relatively coarse-grained This unit is a fluvial deposit consisting of Thin mud layers are This unit is
- 7 amounts of good quality water. generally produce less water than the axial river deposits, but still produce adequate site and is about 2,500 to 3,500 ft thick beneath the subdivision site. These sediments Mountains. uplift, which were eroded and deposited as alluvial fans along the slope of the Sandia The Upper, Middle, and Lower Santa Fe Group piedmont deposits are divided into 4 These sediments originated from Paleozoic and Mesozoic-age rocks of the lithofacies defined by varying amounts of conglomerate, sandstone, and mudstone. This unit is mapped at the surface to the east and west of the subdivision

 ω subdivision site The Loma Barbon member of the Arroyo Ojito Formation consists of fine-grained member of the Arroyo Ojito Formation is mapped at the surface to the west of the deposits described above, and the water is of poorer quality. well consolidated, they do not produce as much water as the other Santa Fe Group sandstone with interbedded mudstone. Because these sediments are fine grained and The Loma Barbon

(Johnson, 2000). rifting and are typically west-side down, steeply-dipping normal faults with north-south trends crystalline and sedimentary rocks of the Sandia Mountains. Faults in the area are related to the east of the subdivision site lie the Proterozoic, Paleozoic, and Mesozoic-age

and in the surrounding area, as shown in the water-level elevation contour map (Figure 5). years to tens of years. Ground water flows west to northwest at the Apache Mesa Subdivision 250 to 450 ft in zone B2a (Figure 4). Ground-water residence times are on the order of a few water for domestic purposes (Johnson, 2000). Depth to productive ground water ranges from Group sediments are 2,500 to 3,500 ft thick and produce sufficient quantity and quality of consists of relatively permeable gravel and sand, with minor mudstone. These Upper Santa Fe The subdivision site falls within the hydrogeologic zone B2a of Johnson (2000), which

conductivities exceeding 200 ft/day (Johnson, 2000). much higher, with transmissivity values ranging from 90 to over 13,000 ft²/day, and hydraulic However, near the subdivision site both transmissivity and hydraulic conductivity values are feet squared per day (ft²/day). In hydrogeologic zone B2a, transmissivity is moderate, ranging from 70 to over 200 Hydraulic conductivities range from about 3 to 7 ft/day.

New Mexico Environment Department/Drinking elements such as arsenic, iron, and manganese may be present in concentrations that exceed with calcium and bicarbonate as the major dissolved ions (Johnson, 2000). site, in the northernmost part of zone B2a, the TDS concentration is typically below 300 mg/L, (TDS) concentrations varying from 220 to 420 milligrams per liter (mg/L). At the subdivision Water quality in zone B2a ranges from excellent to good, with total dissolved solids Water Bureau (NMED/DWB) standards In zone B2a, trace

AQUIFER PUMPING TEST AND WATER-QUALITY SAMPLING RESULTS FOR APACHE MESA TEST WELL RG-81338

Drilling, Completion, and Development of RG-81338

well RG-81338 are included in Appendix A. the casing was capped off. level (agl). were installed. Following drilling of the borehole, 5-inch outer diameter schedule 40 PVC casing and screen borehole quarter of Township 13 North, Range 4 East, Section 35. The contractor drilled a 7-7/8-inch well at the proposed subdivision site. Murray Drilling Company of Bernalillo, New Mexico, was contracted to drill a test to The well record submitted to the NMOSE and the well completion diagram for 760 feet below ground level (ft bgl), using the direct mud rotary method. A total of 150 ft of screen was installed from 610 to 760 ft bgl. The bottom of Blank casing was installed from 610 ft bgl to 2 ft above ground Drilling began on October 27, 2003, in the southwest

that occurred during drilling bgl. Development pumping took place on November 12 and 13, 2003. at varying flow rates in order to remove fine-grained sediments and repair formation damage November 12, 2003, a 7.5-horsepower submersible test pump was installed to a depth of 509 ft development. remove mud cake, and to help settle the gravel pack. Initial well development was performed by jetting water through the screen in order to in order to remove additional JSAI was not present during drilling, casing, or initial development. sediments that accumulated Following the jetting, the well was The well was pumped during the initial

Step-Drawdown Pumping Test

bucket. measured with a Blue-White 10-40 gpm flow meter and verified using a calibrated 5-gallon flow of 4 gpm at each step, followed by the collection of recovery data. of the well. The pumping test consisted of four 60-minute pumping steps, with an increase in determine a flow rate for the constant-rate aquifer pumping test and to estimate the efficiency using a 7.5-horsepower submersible pump. JSAI collected water-level measurements at 1-minute intervals during pumping and JSAI performed a step-drawdown pumping test at well RG-81338 on November 14, The step-drawdown test was

Figure 6 presents a plot of the step-drawdown test. measuring water levels. Table 1 presents the results from the step-drawdown pumping test. line sounder. recovery using a miniTroll 2000 transducer/data-logger and Win-Situ 4.0 software, and a wire-A 1-inch (interior diameter) sounding tube was installed in the well for

Table 1. Results from the step-drawdown pumping test performed on November 14, 2003, Apache Mesa Subdivision, southern Sandoval County, New Mexico

step no.	flow rate, gpm	drawdown, ft	Q/s, gpm/ft
	starting water l	starting water level = 449.95 ft bgl	
1	20	4.83	4.14
2	24	6.23	3.85
3	28	7.44	3.76
4	32	8.78	3.64

Q/s ft bgl

specific capacity feet below ground level

through the aquifer, filter gravel, and screen. increasing pumping rates due to increased effects of turbulent flow due to water moving Bierschenk analysis are presented in Table 2. results from the step-drawdown aquifer pumping test (Bierschenk, 1964). The results of the A Bierschenk analysis was performed to determine the efficiency of the well using the The efficiency of the well decreases with

Table 2. Apache Mesa Subdivision, southern Sandoval County, New Mexico Results of the Bierschenk analysis of step-drawdown pumping test results,

efficiency, percent 78.58 75.36 72.38 69.64
--

*estimated from results

Constant-Rate Pumping Test

recovery measurements from the constant-rate pumping test at well RG-81338 is included in gpm for each foot of water-level decline in the well. discharge rate and drawdown, and this well was capable of producing water at a rate pumping 28 gpm. The specific capacity is a measure of the productivity of the well in terms of minute per foot (gpm/ft), with a maximum drawdown of 7.79 ft occurring after 531 minutes of minutes. The specific capacity of the well after 1,440 minutes of pumping was 3.6 gallons per 457.28 ft bgl, at which point the well had been pumped at a rate of about 28 gpm for 1,440 prior to the test was 449.56 ft bgl. The well was pumped at 28 gpm for 1,440 minutes (24 hours). 1-inch (interior diameter) sounding tube was installed in the well for measuring water levels. miniTroll 2000 transducer/data-logger and Win-Situ 4.0 software, and a wire-line sounder. 2003, water-level measurements the hydraulic properties of the aquifer near the well. Flow rate was measured with a Blue-White 10-40 gpm flow meter and verified using a calibrated 5-gallon bucket. JSAI collected using a 7.5-horsepower submersible pump. JSAI performed a constant-rate pumping tests at well RG-81338 on November 17, at 1-minute intervals during pumping and recovery using The pumping level at the end of the constant-rate test was The pumping test was performed to assess A selection of the drawdown and The non-pumping water level

summary of the constant-rate pumping test. while a transmissivity of 2,459.7 ft²/d was calculated from the recovery curve. recovery curve. transmissivity near well RG-81338 was calculated from both the drawdown curve data were analyzed using the Cooper-Jacob (1946) "straight-line" method. Drawdown and recovery data were plotted on a semi-logarithmic plot (Figure 7), and A transmissivity of 823.5 ft²/d was calculated from the drawdown curve, Table 3 is a Aquifer

used to calculate low-end transmissivity using a large storage coefficient of 0.1 for near water value method of Walton (1970). because there are more data points defining the straight line. The transmissivity calculated from the drawdown curve is probably a more reliable drawdown curve was checked using the "specific capacity and transmissivity slide In this method, a rearranged form of the Theis equation is The transmissivity value

confirms that the value of 823.5 ft²/d from the drawdown curve is a conservative value "specific capacity and transmissivity slide rule" method was calculated to be 1,010 ft²/d, which from the pumping test was adjusted accordingly. table conditions. The well was assumed to be 70 percent efficient, and the specific capacity The low-transmissivity value based on the

Table 3. Summary of the constant-rate aquifer pumping test at RG-81338, Apache Mesa Subdivision, southern Sandoval County, New Mexico

•	· .	_	
ft bgl feet by gpm/ft gallon ft^2/d feet so	449.56	ft bgl	starting water level,
feet below ground level gallons per minute per foot of drawdown feet squared per day	28	gpm	pumping rate,
ıf drawdown	3.6	gpm/ft	specific
	823.5	drawdown	calculated tr
	2,459.7	гесочегу	calculated transmissivity, ft²/d

Water-Quality Analysis

lower than the current NMED/DWB standard and maximum contaminant level 23, 2006, is 0.05 mg/L, and the arsenic concentration in water sampled from well RG-81338 is mg/L that will be effective January 23, 2006. However, the standard for arsenic until January NMED/DWB standards, except the arsenic concentration, which is above the standard of 0.01 Appendix C. quality analysis, and the laboratory report and chain-of-custody documentation are attached as analysis within 24 hours of sampling the well. Table 4 summarizes the results of the watermicrometer filters. Samples to be analyzed for dissolved metal concentrations were filtered in the field with 0.45 were submitted to Hall Environmental Analysis Laboratory of Albuquerque, New Mexico. the end of the 24-hour constant-rate pumping test on November 18, 2003. Samples were collected from well RG- 81338 for water-quality analysis 90 minutes Concentrations of all water-quality parameters listed in Table 4 are below the Samples were delivered to Hall Environmental Analysis Laboratory for Samples

November 18, 2003, Apache Mesa Subdivision, southern Sandoval County, New Mexico Table 4. Results of the water-quality laboratory analysis, sampled from RG-81338 on

OIS	Land Subdivision Regulati	the Sandoval County	as published ir	MCL Maximum contaminant level as published in the Sandoval County Land Subdivision Regulations
52	<u>ئ</u>	0.12	mg/L	zinc
(a)	<i>ي</i>	<0.50	UTU	turbidity
5002	500 ³	430	mg/L	total dissolve solids
250-	2503	73	mg/L	sulfate
(a)	1003	52	mg/L	sodium
0.12	0.1^{3}	<0.005	mg/L	silver
6.5 to 8.5 ²	6.5 to 8.5 ³	7.67	units	pH
34	ઝુ	<1.0	TON	odor
0.054	0.053	0.002	mg/L	manganese
0.3	0.33	<0.02	mg/L	iron
(a)	250 ³	230	mg/L	hardness (CaCO ₃)
0.52	0.53	<1.0	mg/L	foaming agents (surfactants)
1.0	1.3	<0.006	mg/L	copper
15-	153	<5.0	c.u.	color
250-	2503	35	mg/L	chloride
(a)	(a)	68	mg/L	calcium
$0.05 - 0.2^2$	$0.05 \text{ to } 0.2^3$	<0.02	mg/L	aluminum
(a)	(a)	230	mg/L	alkalinity
0.002	0.002	< 0.001	mg/L	thallium
0.05	0.05	0.003	mg/L	selenium
}	-	<0.1	mg/L	nitrite
10	10	0.16	mg/L	nitrate
(a)	0.1	<0.01	mg/L	nickel
0.002	0.002	<0.0004	mg/L	mercury
0.015	0.015	<0.005	mg/L	lead
4.0	4.0	0.33	mg/L	fluoride
0.2	0.2	<0.005	mg/L	cyanide
0.1	0.1	<0.006	mg/L	chromium
0.005	0.005	<0.002	mg/L	cadmium
0.004	0.004	< 0.003	mg/L	beryllium
2.0	2	0.072	mg/L	barium
0.01	0.05	0.011	mg/L	arsenic
0.006	0.006	<0.001	mg/L	antimony
NMED/DWB standards	MCL	result	unit	constituent

MCL Maximum contaminant level as published in the Sandoval County Land ¹arsenic values effective January 23, 2006. Until then, the MCL is 0.05 mg/L. ²Secondary (aesthetic-related) standards

mg/L c.u. ³Secondary maximum contaminant level as in the Sandoval County Land Subdivision Regulations values in bold exceed the NMED/DWB standard

NMWQCC New Mexico Water Quality Control Commission

NTU nephel milligrams per liter color units nephelometric turbidity units No standard available

n/a T.O.N.

no standard applies threshold odor number

GROUND-WATER AVAILABILITY

diversion per lot in this subdivision, will be 0.50 ac-ft/yr. continuous 100-year water supply beneath each subdivision site. assessment with the understanding that the water diverted by each lot will be 0.50 ac-ft/yr. The Land Subdivision Regulations of Sandoval County, New Mexico, require JSAI performed this hydrogeologic The maximum allowable В

Recharge

precipitation values from this long period of record accounts for drought conditions. Recharge missing), over each subdivision site, is estimated using the equation period of record 1941 to 1981 at the Bernalillo 1 NNE weather station and 1983 to 2002 at the calculated to be 9.13 inches (0.76 ft), which is the mean annual precipitation calculated for the arroyo bottoms. Tertiary-age Upper Santa Fe Group deposits mapped at the surface, and storm-water flow in from storm-water flow over the Quaternary-age Piedmont alluvium and Quaternary-Corrales weather station (excluding years for which 3 or 4 months of precipitation data were Recharge to the aquifer beneath the Apache Mesa Subdivision was assumed to occur as provided by the Western Regional Climate Center. The mean annual precipitation at the Apache Mesa Subdivision was The use of average

recharge =
$$P \times 0.025 \times A_i$$
,

0.025Recharge estimates for the subdivision are presented in Table 5. of Quaternary-age piedmont and Quaternary- to Tertiary-age Upper Santa Fe Group), where P is the mean annual precipitation (0.76 ft), A_i is the area of infiltration (about 35 acres is the percentage of precipitation recharging the aquifer beneath the subdivision site and

Table 5. Estimated recharge, Apache Mesa Subdivision, southern Sandoval County, New Mexico

0.67	35	total subdivision
0.67	35	Quaternary-age piedmont and Upper Santa Fe Group
recharge, ac-ft/yr	acreage of subdivision site	aquifer

Ground Water in Storage

using the method Ground water in storage available in the aquifer beneath the subdivision was estimated

$$S = Ac \times SY \times ST \times RC$$

where:

S = ground water in storage, in ac-ft Ac = size of tract, in acres

SY = specific yield for unconfined aquifer (0.1)

RC = recovery factor (0.8)ST = saturated thickness of aquifer (1000 ft for the Upper Santa Fe Group)

storage. Each lot has sufficient water for a 100-year continuous supply evidence during well drilling, completion, or aquifer testing that water is present as confined unconfined storage value was used to calculate ground water in storage because there was no year, and pumping from all lots beginning at the same time, are presented in Table 6. return flow from septic systems, all lots pumping 100 percent of allowable diversion each 760 ft. penetrate the entire saturated thickness of the aquifer, since it was completed to a total depth of from 250 to 450 ft. Fe Group, since it is 2,500 to 3,500 ft thick and the depth to productive ground water ranges Estimates of ground water in storage for the subdivision, assuming no recharge, no A conservative value for saturated thickness of 1,000 ft was used for the Upper Santa The well RG-81338 completed and tested in the subdivision does not Αn

Table 6. Ground water in storage, Apache Mesa Subdivision, southern Sandoval County, New Mexico

Toolog	1,000	Frecoverable ground water in storage remaining after two years, active
1 050	1 050	11 constant in the constant of the 100 years of the
		a 100-yr continuous supply
62.5	62.5	percent of total recoverable ground water in storage that is required for
1,750	1,750	water required for 100-yr continuous supply, ac-ft
35	35	number of lots
2,800	2,800	recoverable ground water in storage, ac-ft
3,500	3,500	total ground water in storage, ac-ft
0	0	recharge, ac-ft/yr
0.1	0.1	specific yield ^b
1,000	1,000	estimated aquifer saturated thickness, ft
35	35	acreage of subdivision site
subdivision	Opper Santa re Group	aquifer

Multiplied by a recovery factor of 0.8

Ground-Water Flow Model to Assess Impacts of Pumping Apache Mesa Subdivision Wells on Aquifer

U.S. Geological Survey MODFLOW code (McDonald and Harbaugh, 1988). 0.50 ac-ft/yr (0.31 gpm) per well, were simulated using Visual MODFLOW, a version of the a result of pumping 35 wells in the subdivision (one well per lot at full build-out) at a rate of Long-term drawdowns in the Apache Mesa Subdivision and the surrounding region as

No boundary conditions were placed on the model. effects, given the relatively large transmissivity values and small pumping rate in the model. of 9 square miles (Figure 8). uniformly 0.125 miles, and the model consisted of 12 rows and 12 columns covering an area developed for the simulation was a one-layer superposition model. effect of pumping on nearby wells located within 1 mile of the subdivision. Apache Mesa Subdivision as a result of pumping the subdivision wells, and to determine the The objectives of modeling were to determine the maximum 100-year drawdown in the The model was made sufficiently large to minimize boundary The layer thickness was 350 ft and the Model grid spacing was The model

bdimensionless

Upper Santa Fe Group. Recharge to the aquifer was not included in the model simulation the subdivision, and 0.0003 for unconsolidated rocks such as Quaternary- to Tertiary-age specific storage was 0.00003 for consolidated rocks such as Cretaceous-age rocks to the east of

conductivity value of 5.49 ft/d, were used for the Upper Santa Fe Group at the Apache Mesa conservative transmissivity value of 823.5 ft²/d, calculated from the drawdown curve from the according to the pumping tests that have been conducted in the zones. Environmental Consultants, 1998; Newcomer, 1994). estimated for the Cretaceous-age Menefee Formation 1 mile east of the model area (Turner 24-hour constant-rate reflective of results of aquifer pumping tests completed in the area and published values for the Transmissivities were assigned to the different hydrogeologic zones rock types of 0.52 ft/d, The various aquifer units in the model area were assigned different hydraulic properties Group (Table 7; Table 8, Figure 8). The transmissivity values reported for the Upper A transmissivity value of 21 ft²/d, and a corresponding hydraulic conductivity in the model area range were used for the Cretaceous-age rocks. pumping test of well RG-81338, from 72 to $4,095 \text{ ft}^2/\text{d}$ and This transmissivity value a corresponding hydraulic in the model area (Johnson, A relatively 2000).

"type zero" drawdowns drawdowns coincided for the two models, the "type 3" drawdowns were very similar to the by running the model as a "type 3" variable transmissivity model. The "type 3" model results were slightly different from the "type zero" model results. Although the areas of maximum constant storativity and constant transmissivity values. JSAI performed a sensitivity analysis the effective The effective porosity was set equal to the specific yield and the total porosity was 1.5 porosity. The model was run as a "type zero" confined aquifer with

12 North, Range 4 East, centered around the Apache Mesa Subdivision parts of Sections 34 and 35 of Township 13 North, Range 4 East, and Section 2 of Township drawdowns of about 1.1 ft in the aquifer after 100 years over an area of about 1 square mile in the southwest quadrant of Township 13 North, Range 4 East, Section 35, along the northern have a maximum value of about 1.4 ft, which would take place over an area of several acres in subdivision after 100 years of pumping 35 wells in the Apache Mesa Subdivision would Model results indicate that the drawdown in the Upper Santa Fe Group aquifer beneath of the Apache Mesa Subdivision (Figure 9). Model results indicate maximum

Table 7. Hydraulic properties assigned to the aquifers beneath the Apache Mesa Subdivision, southern Sandoval County, New Mexico

geologic unit(s)	well screen interval, ft	hydraulic conductivity, ft/d	transmissivity, ft²/d	aquifer test references
Upper Santa Fe Group of hydrogeologic zone B3	20	11.3	226	Geohydrology Associates, Inc., 1995 John Shomaker & Associates, Inc., 1987 Turner Environmental Consultants, 1997
Upper Santa Fe Group of hydrogeologic zone B2a	150	5.49	823.5	this report
Upper Santa Fe Group of hydrogeologic zone B2b	200	0.36	72	Geohydrology Associates, Inc., 1995
Cretaceous-age rocks of hydrogeologic zones R2, R3, and R4	40	0.52	21	Turner Environmental Consultants, 1998 Newcomer, 1994
ft/d feet per day				ft²/d feet squared per day

Table 8. Model inputs for the aquifers beneath the Apache Mesa Subdivision, southern Sandoval County, New Mexico

blue grass green	
350	purple 350 blue 350 grass green 350
350 350	
5.49	5.49
0.0003	0.0003
03 0.1	
0.1	0.1
0.1	0.1
	11.3 0.0003

feet per day

^a Geohydrology Associates, Inc., 1995; John Shomaker & Associates, Inc., 1987; Turner Environmental Consultants, 1997 ^b based on 24-hour constant-rate aquifer pumping test conducted at well RG-81338 in the Apache Mesa Subdivision described in this report

Geohydrology Associates, Inc., 1995

d Turner Environmental Consultants, 1998; Newcomer, 1994

14

Subdivision Wells Pumping Levels in Well RG-81338 After 100 Years as a Result of Pumping Apache Mesa

the short-term drawdown estimate from the aquifer pumping test performed on the well of pumping wells within the subdivision is presented in Table 9. calculated based on the 100-year drawdown estimate from the ground-water flow model and The pumping level calculated for test well RG-81338 at the end of 100 years as a result The pumping level was

Table 9. Calculated 100-year pumping level in test well RG-81338 completed and testpumped in the Apache Mesa Subdivision when pumping 0.60 acre-feet per year

well	total depth of well, ft	non- pumping water level in well, ft bgl	water colum n in well, ft	short-term drawdown in well, ft	long-term drawdown in well, ft	pumping level after 100 years, ft bgl	percent of water column remaining, ft
RG-81338	760	449.6	310.4	7.8	1.4	458.8	97
A Lal fact	fast balans around lave	loual					

ft bgl feet below ground level

Mesa Subdivision Wells Long-Term Drawdown at Subdivision Site Boundaries as a Result of Pumping Apache

drawdown at the subdivision boundaries ranged from 1.1 ft near the southeastern boundary to estimated using the ground-water flow model described above. The model-simulated 100-year 1.4 ft near the northern boundary of the subdivision (Figure 9). Long-term drawdown of the water table at the boundaries of the subdivision was

Effects of Pumping Apache Mesa Subdivision Wells on Surrounding Wells

adjacent to the Apache Mesa Subdivision, was most affected by pumping within the summarized in Appendix D. effects of pumping on wells within a 1-mile radius of the subdivision boundaries the subdivision was estimated using the ground-water flow model described above. The effect of pumping within the Apache Mesa Subdivision on wells located outside Well RG-43248, completed in the Upper Santa Fe Group are The

had model-simulated drawdowns of 1.1 ft. and RG-44347, completed in the Upper Santa Fe Group west of the Apache Mesa Subdivision, water column remained in the well after 100 years. subdivision. Santa Fe Group north of the Apache Mesa Subdivision, also had model-simulated drawdowns drawdowns of 1.1 ft. Upper Santa Fe Group east of the Apache Mesa Subdivision, also had model-simulated The 100-year drawdown in RG-43248 was 1.1 ft, and 99 percent of the starting Wells RG-67590, RG-68855, and RG-72457, completed in the Upper Wells RG-32505 and RG-58639, completed in the Wells RG-43031, RG-58560, RG-11802,

Surrounding Wells on Aquifer at Apache Mesa Subdivision Albuquerque Ground-Water Flow Model to Assess Long-term Impacts of Pumping

study, and the model assumes pumping of ground-water at the full extent allowed by existing the subdivision was 23 ft. It should be noted that the Albuquerque model (Tiedeman et al., this model cell to represent the subdivision. The model-simulated drawdown after 100 years at pumping wells of the surrounding Placitas area in addition to the Albuquerque Basin. percent of the starting water column would remain after 100 years surrounding wells of the Placitas area and Albuquerque Basin would be 481.8 ft, and 90 the Apache Mesa Subdivision. Using the Albuquerque model results, the pumping level in test Albuquerque model provides a conservative estimate of the maximum 100-year drawdown at the City of Albuquerque that may occur as a result of the San Juan-Chama Project. Thus, the water rights. 1998) was built to run to year 2040 and not to year 2100, as it was projected for the current Apache Mesa Subdivision is located is row 13, column 44. An observation well was placed in year water supply exists for the subdivision. 100-year drawdown estimates were considered in the determination of whether or not a 100-1998) to estimate 100-year drawdowns in the Apache Mesa Subdivision wells as a result of JSAI ran the Ground-Water Flow Model of the Albuquerque Basin (Tiedeman et al., The model does not account for future reductions in ground water pumping by after 100 years of pumping the Apache Mesa Subdivision wells and the The Albuquerque model cell in which the

Apache Mesa Subdivision Hydrographs to Assess Long-term Impacts of Pumping Surrounding Wells on Aquifer at

quarter mile from the subdivision. The water level data from the well show a strong linear Township 13 North, Range 4 East. Survey monitor well 351843106294501, located in the southeastern quadrant of Section 34, and Albuquerque Basin would be 482.8 ft, and 90 percent of the starting water column would pumping the Apache Mesa Subdivision wells and the surrounding wells of the Placitas area the hydrograph projection, the pumping level in test well RG-81338 after 100 years of Subdivision in years 2000 and 2100, and a 100-year drawdown of 22 ft was calculated. Using (Figure 10). trend, and the linear equation [depth to water = (0.0006 * time) + 410.12] was fit to the trend water level data that spans at least a decade to the present day. The well is located less than a ground-water levels database within a 1-mile radius of the Apache Mesa Subdivision with measurements were recorded between June 1982 and December 2001 at U.S. remain after 100 years. hydrograph from the area surrounding the Apache Mesa Subdivision was used to 100-year drawdown at Apache Mesa Subdivision. The linear equation was used to determine depth to water at Apache Mesa This is the only well in the U.S. Geological Survey Historical water level Geological

Impact of Pumping Apache Mesa Subdivision Wells on Nearby Springs and Streams

no effect on flow in Las Huertas Creek lost to infiltration between the Las Huertas picnic area and the ditch association Huertas is a losing stream in much of its lower reaches, and about 48 percent of streamflow is portion of the creek is in the upper reaches of the headwaters (Brekhus et al., 1991). over more than 50 percent of its reach between the headwaters and Placitas and the perennial Creek, located one and a half miles north of the subdivision. Las Huertas Creek is intermittent (Johnson, 2000). The nearest perennial stream to Apache Mesa Subdivision is Las Huertas Most springs and streams within the vicinity of Apache Mesa Subdivision are and flow primarily in response to spring snowmelt or heavy storm runoff Thus, ground-water pumping from the Apache Mesa Subdivision will have diversion

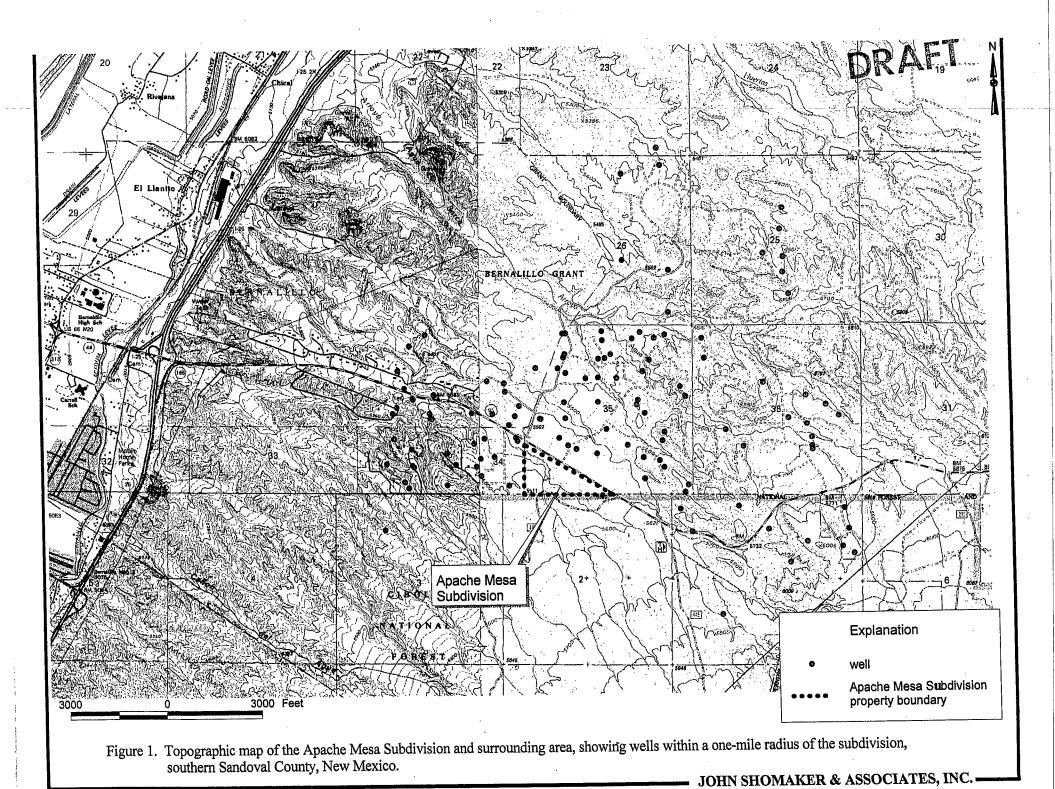
CONCLUSIONS

occurs from storm-water flow over outcrops of Tertiary-age Upper Santa Fe Group. report to estimate ground water in storage and long-term drawdown. Recharge to the aquifer of providing a 100-year supply of water to the subdivision based on the methods used in this The Upper Santa Fe Group aquifer beneath the Apache Mesa Subdivision are capable

hours at a constant rate of 28 gpm. The specific capacity of the well was 3.6 gpm/ft when 81338 was 823.5 ft²/d. pumping 28 gpm. The transmissivity estimated from the drawdown curve from well RG-Well RG-81338, completed in the Upper Santa Fe Group aquifer, was pumped for 24

the subdivision was about 1.1 ft, in wells located directly east, west, and north of the Apache the subdivision and the drawdown of the water table at the subdivision boundaries. hydrograph trends indicate 100-year drawdowns between 22 and 23 ft at the Apache Mesa from 1.1 to 1.4 ft. The maximum model-simulated 100-year drawdown for wells surrounding about 1.4 ft. model-simulated maximum 100-year drawdown within the subdivision was estimated to be was simulated to have a relatively low impact on the saturated thickness of the aquifer beneath Subdivision as a result of pumping surrounding wells of Placitas and the Albuquerque Basin. Mesa Subdivision. Running the Albuquerque model (Tiedeman et al., 1998) and projecting Constant pumping of ground water for 100 years by Apache Mesa Subdivision wells The model-simulated 100-year drawdown at the subdivision boundaries ranged

Subdivision, the flow in the creek will not be affected by pumping Apache Mesa Subdivision Because Las Huertas Creek is a losing stream in the sections near the Apache Mesa


Homeowners should have their water tested by a laboratory prior to using the water as potable supply. Upper Santa Fe Group aquifer produces good quality water that should not require treatment. The field and analytical ground-water-quality results for the test wells show that the

18

REFERENCES

- Bierschenk, W. H., International Association of Scientific Hydrology, Publication 64. 1964, Determining well efficiency by multiple step-drawdown tests:
- Brekhus, J., Chavez, C., Coe, B., Fleming, B., Kilmer, C., Richardson, R., Shore, L., Watson, J., and White, C., 1991, Las Huertas Creek: evaluating a request to transfer water rights fulfillment of the requirements for the Master of Water Resources Administration program, University of New Mexico. from the Menaul School to the Presbytery Conference Center: students report in partial
- Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method for evaluation formation constants and summarizing well-field history: Transactions, American Geophysical Union 27:526-34.
- Geohydrology Associates, Inc., 1995, North Ranchos de Placitas Subdivision geohydrology
- John Shomaker & Associates, Inc., 1987, Ground-water conditions in parts of Sections 25 and report, 6 p. plus figures and appendices. 26, Township 13 North, Range 4 East, Sandoval County, New Mexico: consultant's
- Johnson, Peggy S., 2000, Phase III hydrogeologic and water resource assessment for the submitted to the County of Sandoval, 57 p. plus figures, tables, and appendices. Placitas development area, Sandoval County, New Mexico: Final Technical
- McDonald, Michael G., and Harbaugh, Arlen W., 1988, A modular three-dimensional finitedifference ground-water flow model: Techniques of Water-Resources Investigations of the U.S. Geological Survey. Book 6; ch. A 1, U.S. Geological Survey, Reston,
- Newcomer, Robert, 1994, Los Pastores Subdivision geohydrology report
- Tiedeman, Claire R., Kernodle, John Michael, and McAda, Douglas P., 1998, Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico: U.S. Geological Survey Water-Resources Investigations Report 98-4172,
- Turner Environmental Consultants, 1997, Placitas Trails Subdivision geohydrology report.
- Turner Environmental Consultants, 1998, Los Pastores Subdivision geohydrology report
- Walton, William C., 1970, Groundwater Resource Evaluation: McGraw-Hill, New York, 664 p. plus illustrations

ILLUSTRATIONS

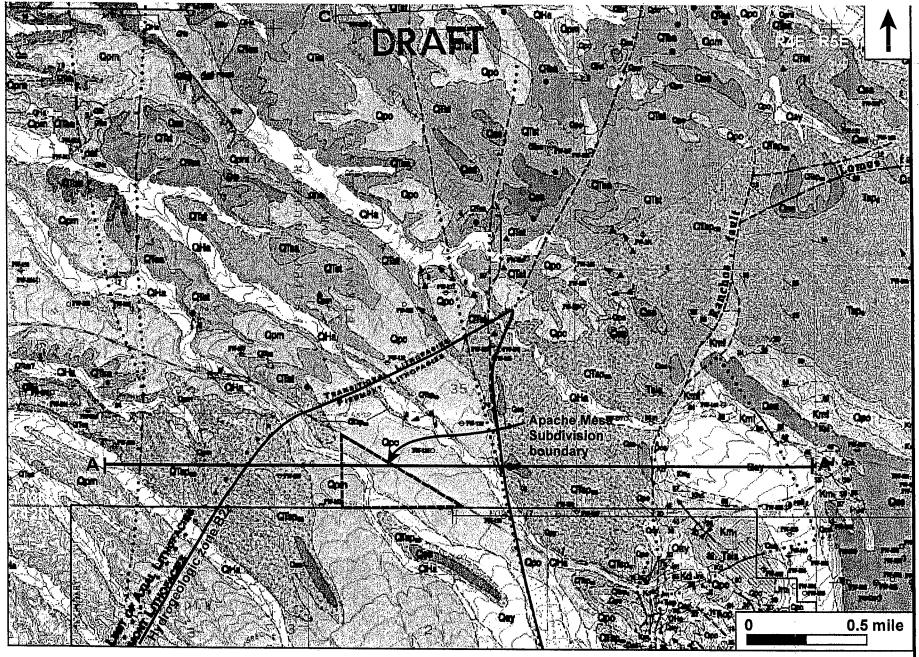
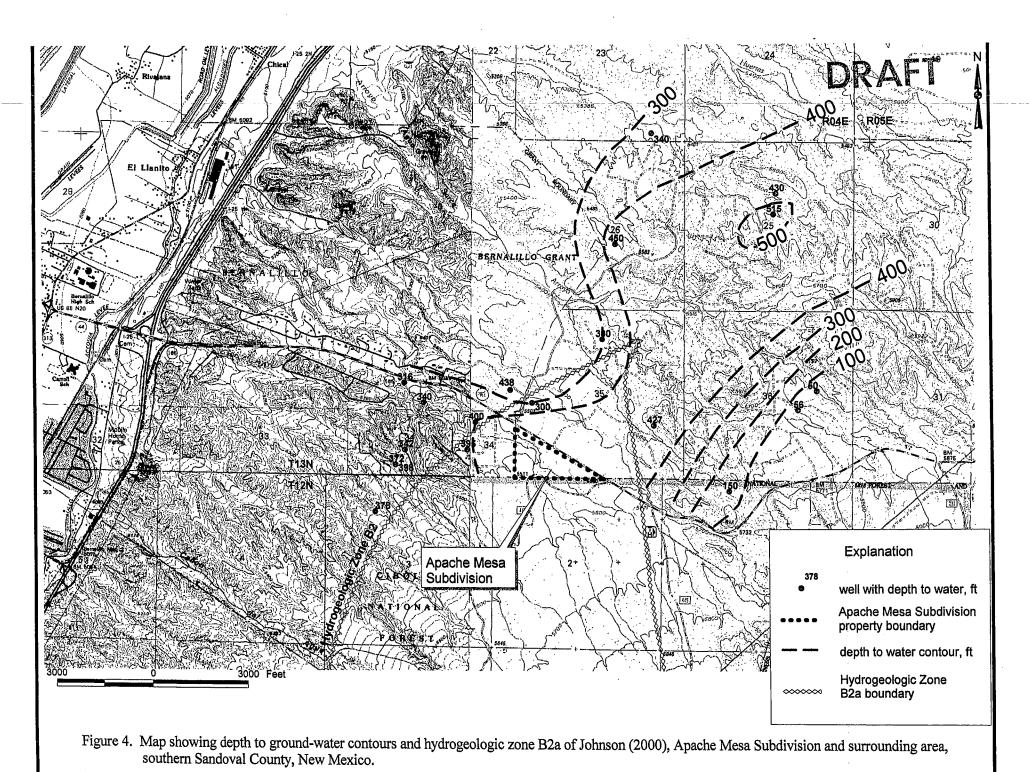
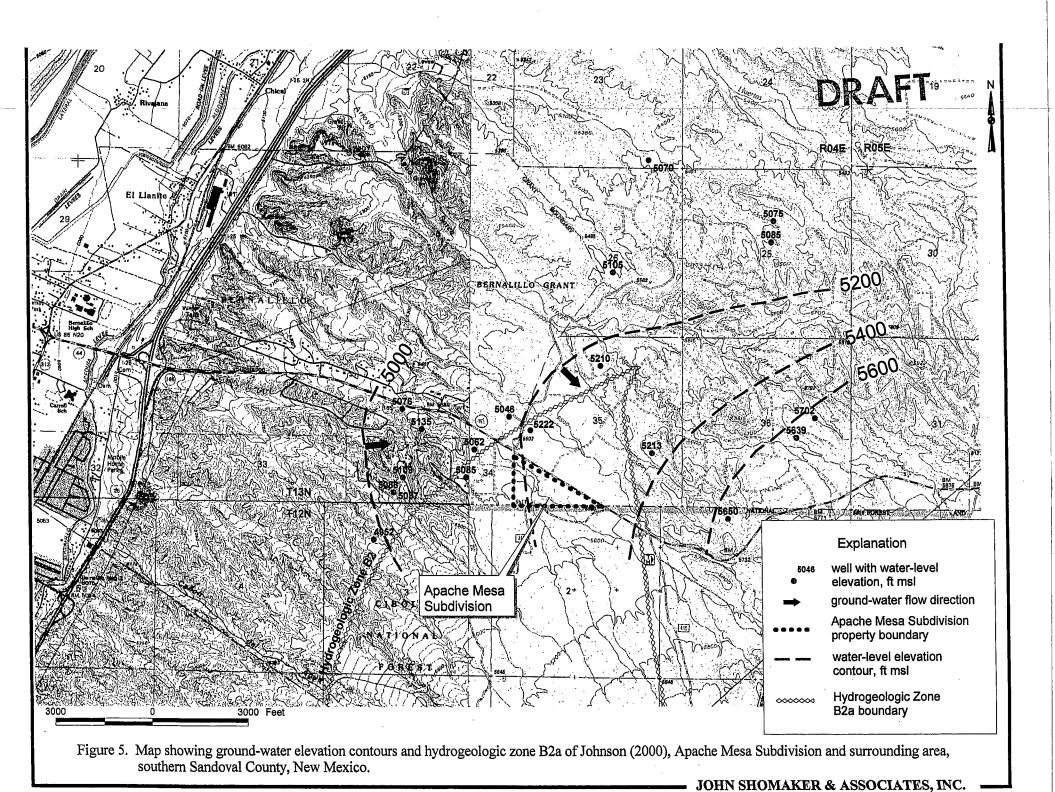




Figure 2. Geologic map of the Apache Mesa Subdivision and surrounding area (Connell et al., 1999) showing line of section and hydrogeologic zone B2a of Johnson (2000), southern Sandoval County, New Mexico. See Figure 3 for explanation of map units.

Figure 3. West-ection.

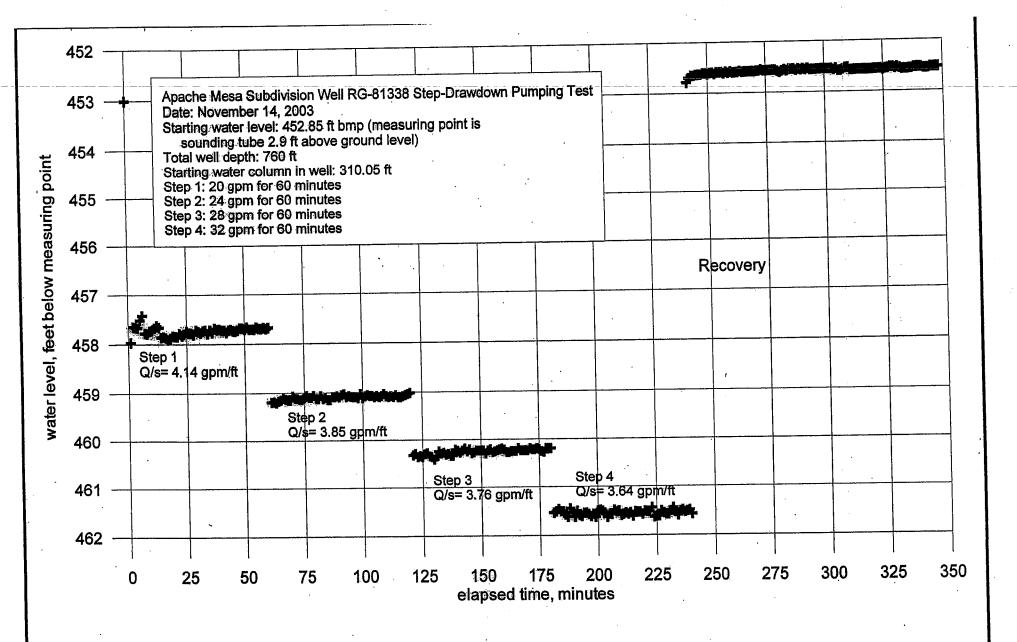


Figure 6. Plot of drawdown and recovery data from the step-drawdown pumping test performed on well RG-81338 on November 14, 2003, Apache Mesa Subdivision, southern Sandoval County, New Mexico.

DRAFT

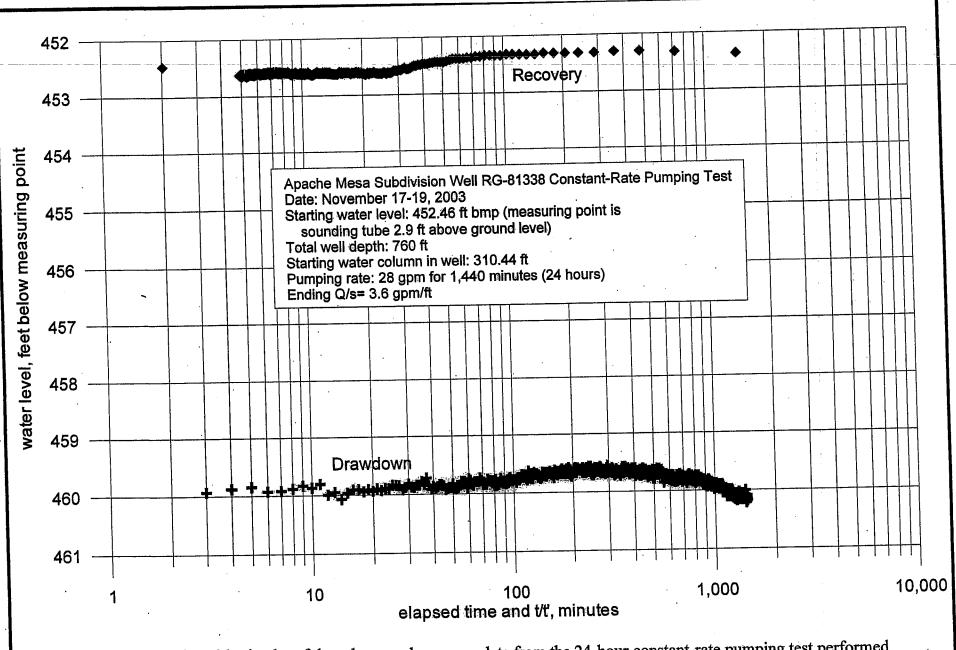


Figure 7. Semi-logarithmic plot of drawdown and recovery data from the 24-hour constant-rate pumping test performed on well RG-81338 between November 17 and 19, 2003, Apache Mesa Subdivision, southern Sandoval County, New Mexico.

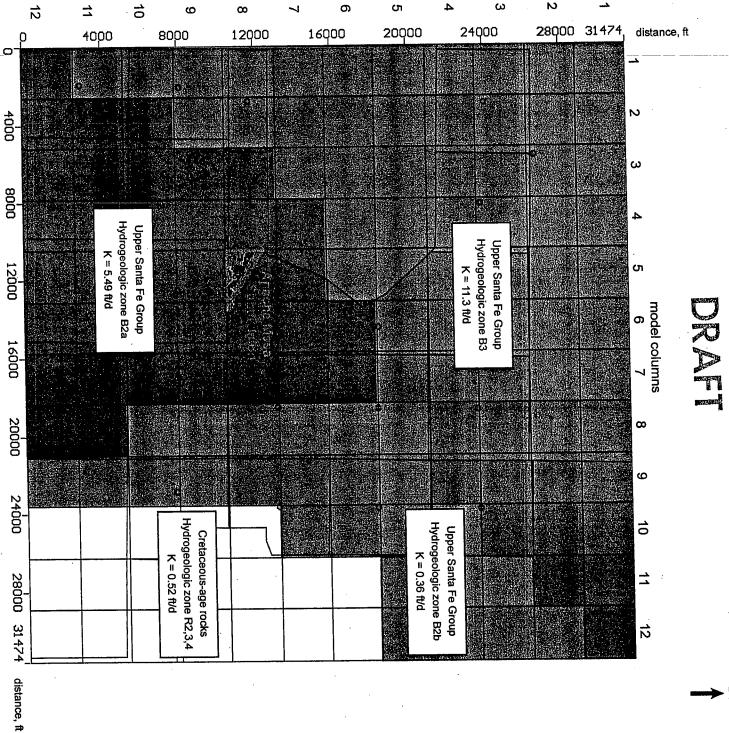
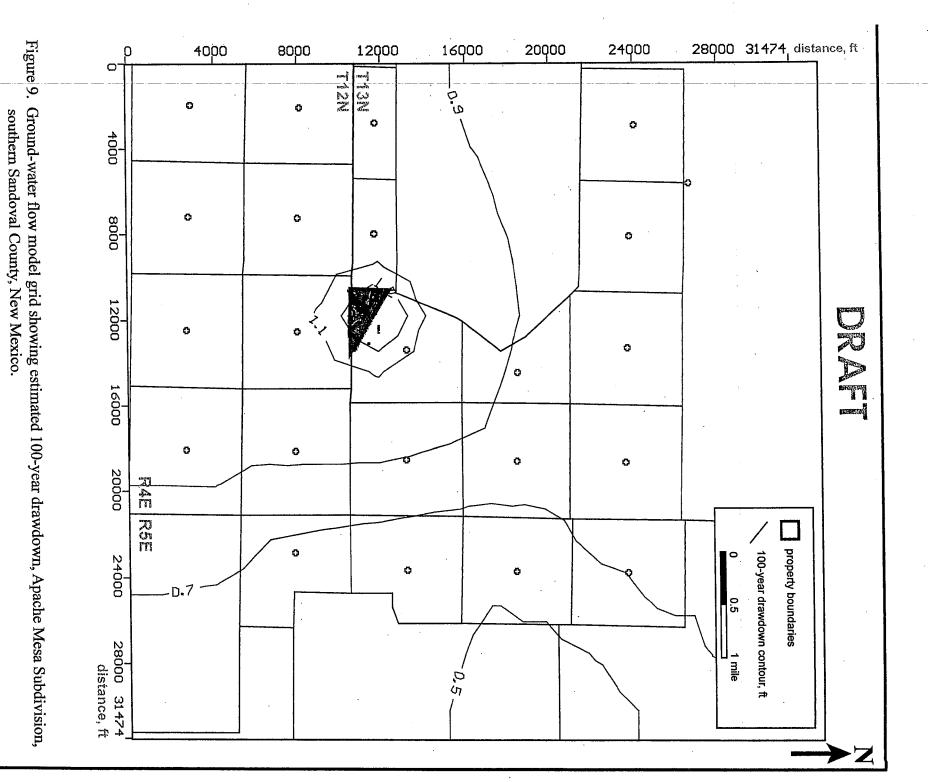



Figure 8. Ground-water flow model grid and domains with varying hydraulic properties, Apache Mesa Subdivision, southern Sandoval County, New Mexico.

JOHN SHOMAKER & ASSOCIATES, INC. WATER-RESOURCE AND ENVIRONMENTAL CONSULTANTS

USGS well 351843106294501 ground-water level hydrograph

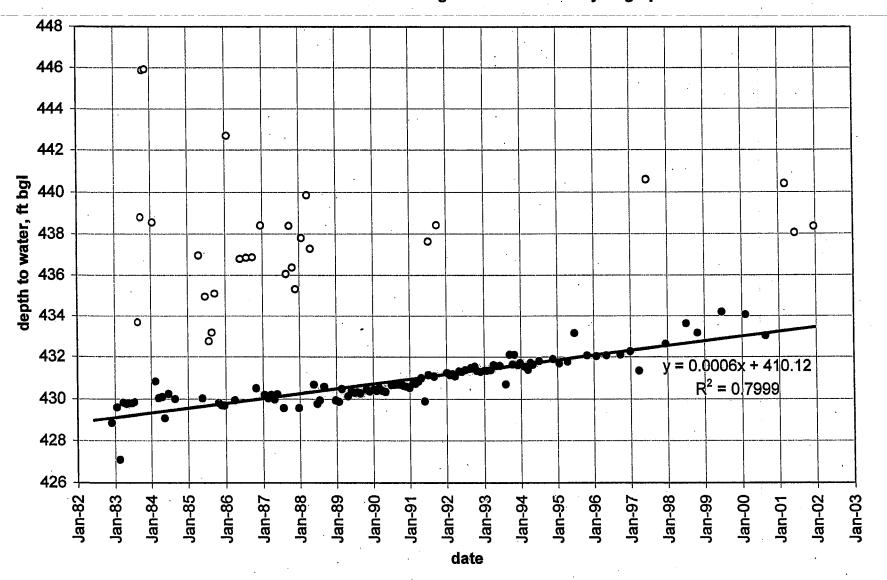


Figure 10. Ground-water hydrograph from well within one mile of the Apache Mesa Subdivision.

DRAFT

JOHN SHOMAKER & ASSOCIATES, INC.

APPENDICES

Appendix A.

Well record and well completion diagram for well RG-81338 in the Apache Mesa Subdivision

JOHN SHOMAKER & ASSOCIATES, INC. 2703-B Broadbent Parkway NE Albuq. NM 87107

Borehole Logging Form

	T.D. 760 feet	T.D.		
		·		
tely sorted, subrounded, about /0 percent	grayish-red sand; very fine to medium sand is moderately sorted, subrounded, about /0 percent quartz, 30 percent feldspar	grayi quart	290	470-760
Sercent quartz, 30 between reteasem	brown sandy clay; fine sand is subrounded, about /0 percent quartz, 50	prom	10	460-470
Har to subrounded, granter compositions	grayish-red gravely sand; 10 percent gravel is subangular to subtounded, grantic compositions, very coarse sand is subangular	grayis very (220	240-460
angular to subrounded, granute	red-brown gravely clay; 40 to 50 percent gravel is subangular to subrounded, granutic composition	red-bı comp	60 .	180-240
maed, grantic composition, como cano	red-brown sandy gravel; gravel is subangular to subrounded, granule is subrounded	red-br	180	0-180
it's composition: coarse sand	ption	Description	Thickness,	Depth, ft
Town of Placitas	505 ft amsl TOC: 2.9 ft agl	Land Surface: 5505 ft amsl	Elevation, ft Land Surface	Elevation, ft
on south side of nighway west or	Bit size: 7-7/8-inch tricone	ng, drilled to	Notes: JTL not on site for drilling, drilled to	Notes: JTL not
east on Highway 105, KU-61556	Rig: mud rotary	ary drilling	direct mud rotary drilling	Drill Method:
Map: Bernalillo exit 240,	Contractor: Murray Drilling Company		JTL	Geologist: J
ate	Apache Mesa Subdivision, near Placitas, southern Sandoval County, New Mexico	on, near Placi	Mesa Subdivisi	Site: Apache
RG-81338	Project: Apache Mesa Subdivision	ssociates	Mark Goodwin and Associates	Client: Mark
		r -hnorer	Ell rainway 141	2/03-B Broadbell ra

STATE ENGINEER OFFICE

Section 1. APACHE MI P.O. BOX 174 ALBUQUER RG 81338 RG 81	ENERAL INFORMATION AA LLC SKIP KRUZICH AA LLC SKIP KRUZICH BOT THE Of the Of the County Feet, N.M. Coordinate System of the test, N.M. Coordinate System of the test of the test of County Depth to water up Depth to	ENERAL INFORMATION AA LLC SKIP KRUZICH AA LLC SKIP KRUZICH BA Of the of the feet, N.M. Coordinate Sys feet, N.M. Coordinate Sys feet, N.M. Coordinate Sys feet, N.M. Coordinate Sys Feet Depth to water up Depth to water up Depth to water up Cubic Feet Length Bottom Feet Cubic Feet Cubic Feet GRAVEL LARGE SAND Cubic Feet J No. I Antative OF STATE ENGINEER ONLY Quad PARTITION AND POP STATE ENGINEER ONLY	Date Received	y:	Plugging Contractor	760 7	Depth in Feet H			5 PVC GLUE	Diameter Pounds Threads (inches) per foot per in.		From 10 680 760 80	pth in Feet	Completed well is Shallow	Elevation of land surface or	Drilling Began	Address	g Cont	c. Lot No of Block No. Subdivision, recorded in 3.6 357 6 d. X= 426778 feet, Y= NON-GRANT	b. Tract No of Map No.	Well was drilled under Permit No		(A) Owner of well	
	SKIP KRUZICH SKIP KRUZICH 87191 87191 f the	CENT COn Method of w CHOSED CLOSED MUD PUMP FWIL FWIL	FOR USE OF STA	Engineer	Section 5. PLU	+		4. RECORD OF	*	+2	Top Top	Section 3. REC	SMA		artesian. Section 2. PRINCIPAL W			- {	IAP: AY DRILLING CO OX 1567 BERNALILLO N			RG 81	ALBUQUERQUE NM	APACHE MESA LLC	

	,		
SMALL GRAVEL LARGE SAND	80	760	680
SMALL GRAVEL & SAND	220	680	460
SAND & TAN CLAY	20	460	440
SAND & GRAVEL	. 110	440	130
RED CLAY & SAND	. 30	130	100
GRAVEL, RED SAND & CLAY	10	100	90
RED SAND SMALL GRAVEL	10	90	80
GRAVEL & RED SAND	80	80	0
Color and Type of Material Encountered	Thickness in Feet	Depth in Feet	Depth i
Section 6. LOG OF HOLE			

Section 7. REMARKS AND ADDITIONAL INFORMATION

ndersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above bed hole.

Driller

RUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office . State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is 1, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed.

DRAFT

Appendix B.

Selected drawdown and recovery measurements taken during the 24-hour constant-rate pumping test at well RG-81338

20		459.72	500	18:50:00	11/17/2003
5 2	1	459.68	450	18:00:00	11/17/2003
35		459.63	400	17:10:00	11/17/2003
2 2		459.58	350	16:20:00	11/17/2003
3 6		459.66	300	15:30:00	11/17/2003
5 5		459.63	250	14:40:00	11/17/2003
1		459.65	200	13:50:00	11/17/2003
2		459.58	190	13:40:00	11/17/2003
8		459.64	180	13:30:00	11/17/2003
00		459.64	170	13:20:00	11/17/2003
9		459.75	<u>8</u>	13-10:00	11/17/2003
2		459.68	150	13:00:00	11/17/2003
9		459.65	40	12:70:00	11/17/2003
13		459.68	30	12.40.00	11/17/2003
6	7.26	459.72	3	12:30:00	\top
۵		459.69	110	10.00	T
2		459.78	100	15:10:00	11/1/2003
9		459.75	95	12:05:00	\top
7		459.83	9	13.00.00	11/1/2003
5		459.81	8	11.55.00	┪
		459.87	80	11.50.00	T
2		459.78	75	11.45.00	11/17/2003
000		459.84	70	11.40.00	7
4		459.8	65	11:35:00	
9		459.75	8	11:30:00	7
3	7.33	459.79	55	11:25:00	7
		459.83	50	11:20:00	\neg
		459.86	45	11:15:00	1
		459.87	6	11:10:00	
		459.78	35	11:05:00	
0.		459.82	30	11:00:00	
		459.84	25	10.55.00	1
	7.48	459.94	20	10:50:00	\neg
	7.50	459.96	5	10:45:00	\top
	7.41	459.87	9	10.40.00	11/17/2003
	7.37	459.83	9	10.39.00	\top
	7.42	459.88	<u>∞</u> .	10.38.00	┪
	7.46	459.92	7	10.30.00	╅
	7.47	459.93	6	0.36.00	1
	7.39	459.85	л 4	10:34:00	\top
	7.42	459.88	2 0	10.33.00	T
	7.47	459.93	2) [7	10.32.00	T
	7.45	459.91	<u> </u>	10:31:00	\top
	7.43	459 89	ء د	10:30:00	Π
no dund	0	452 46	1	Time min	1
notes	# · · · · · · · · · · · · · · · · · · ·	<u> F</u>	:		
	Drawdown.		<u>a</u>	Elapsed	
	ground level	ተወ	ding tube, 2	s top of sounding	Measuring point is top of
	.	losl	transduce	urements with	Automated measurements with transducer
			_		Apacitic mode of
pm	ng rate 28 g	338 pumpii	well RG-81	ndivision test	Anache Mesa Subdivision test well RG-81338 pumping rate 28 gpm

	0.01	452.47	2.02004	1042	9:54:00	11/19/2003
	0.5	452		300	15:26:00	11/18/2003
		+		200	13:46:00	11/18/2003
		╅			12:06:00	11/18/2003
		—	ē	200	00:10:21	11/18/2003
	0.14	Т	16 15	2 2	12.00.00	11/10/2003
	0.14	452 6		8 8	11.56.00	11/10/2000
	0.15	452.61	17 9412	3	11.51.00	11/18/2003
		452.62		8	11.46.00	11/18/2003
				75	11:41:00	11/18/2003
		452.63	21	70	11:36:00	11/18/2003
		452.62	23.1538	65	11:31:00	11/18/2003
	0.17	452.63	25	60	11:26:00	11/18/2003
	0.16	452.62	27.1818	55	11:21:00	11/18/2003
	0.13	452.59	29.8	50	11:16:00	11/18/2003
	0.10	452.56	33	45	11:11:00	11/18/2003
	0.05	452.51	37	40	11:06:00	11/18/2003
	0.02	452.48	42.1429	35	11:01:00	11/18/2003
	-0.02	452.44	49	30	10:56:00	11/18/2003
	-0.07	452.39	58.6	25	10:51:00	11/18/2003
	-0.10	452.36	73	20	10:46:00	11/18/2003
	-0.11	452.35	97	15	10:41:00	11/18/2003
	-0.13	452.33	145	10	10:36:00	11/18/2003
	-0.14	452.32	161	9	10:35:00	11/18/2003
	-0.14	452.32	181	8	10:34:00	11/18/2003
	-0.14	452.32	206.714	7	10:33:00	11/18/2003
	-0.14	452.32	241	6	10:32:00	11/18/2003
	-0.14	452.32	289	5	10:31:00	11/18/2003
	-0.15	452.31	361	4	10:30:00	11/18/2003
	-0.15	452.31	481	ပ	10:29:00	11/18/2003
	-0.13	452.33	721	2	10:28:00	11/18/2003
recovery	-0.08	452.38	1441		10:27:00	11/18/2003
pump off	7.72	460.18		1440	10:26:00	11/18/2003
	7,66	460.12		1400	9:50:00	11/18/2003
	7.64	460.1		1300	8:10:00	11/18/2003
	7.53	459.99		1200	6:30:00	11/18/2003
	7.52	459.98		1100	4:50:00	11/18/2003
	7.48	459.94		1000	3:10:00	11/18/2003
.	7.42	459.88		950	2:20:00	11/18/2003
	7.39	459.85		900	1:30:00	11/18/2003
	7.37	459.83		850	0:40:00	11/18/2003
	7.32	459.78		800	23:50:00	11/17/2003
	7.35	459.81		750	23:00:00	11/17/2003
	7.34	459.8		700	22:10:00	11/17/2003
	7.32	459.78		650	21:20:00	11/17/2003
	7.31	459.77		600	20:30:00	11/17/2003
	7.22	459.68		550	19:40:00	11/17/2003

Appendix C.

Laboratory report for water-quality analyses and chain-of-custody forms, and NMED/DWB drinking water standards.

COVER LETTER

December 05, 2003

Roger Peery
John Shomaker & Assoc.
2703-D Broadbent Pkwy NE
Albuquerque, NM 87107
TEL: (505) 280-1994
FAX (505) 345-9920

RE: Placitas/Apache

Dear Roger Peery:

Order No.: 0311131

presented in the following report. Hall Environmental Analysis Laboratory received 1 sample on 11/18/2003 for the analyses

These were analyzed according to EPA procedures or equivalent

compounds below these (denoted by the ND or < sign) has been made. Reporting limits are determined by EPA methodology. No determination of

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

	必	repleasing units	٠ ر ح			
Analyst: WAF 11/18/2003	_	NTU UTN'C	0.50	ND	EPA METHOD 180.1: TURBIDITY	EPA MET
11/24/2003	_	mg/L	1.0	430	EPA METHOD 160.1: TDS Total Dissolved Solids	EPA M Total
Analyst: MAP		5	0.010	7.70		멀
Anaiyst: MAF 12/1/2003		pH units	000	7 70	EPA METHOD 150.1: PH	EPA M
Anghiet MAD	-	mg/L	0.050	0.12		Zinc
11/20/2003 2:49:20 PM	ـ ،	mg/L	1.0	52	a	Sodium
11/20/2003 2:49:20 FM		mg/L	0.0050	ND		Silver
11/20/2003 2:49.20 FM	د ،	mg/L	0.010	ND		Nickel
11/20/2003 2:49:20 PM		mg/L	0.0020	0.0020	anese South	Manganese
11/20/2003 2:49:20 PM	_	mg/L	1.0	6.2		Lead
11/20/2003 2:49:20 PM	_	mg/L	0.0050	N		T TO
11/20/2003 2:49:20 PM	->	mg/L	0.020	N		Copper
11/20/2003 2:49:20 PM		mg/L	0.0060	ND		Chromium
11/20/2003 2:49:20 PM	_	mg/L	0.0060	ND		Calcium
11/20/2003 2:49:20 PM		mg/L	1.0	68	um	Cadmium
11/20/2003 2:49:20 PM	_	mg/L	0.0020	ND I	lm .	Beryllium
11/20/2003 2:49:20 PM		mg/L	0.0030	ND :		Barium
11/20/2003 2:49:20 PM	_	mg/L	0.0020	0.072	UM .	Aluminum
11/20/2003 2:49:20 PM	.	mg/L	0.020	ALS ND	EPA METHOD 6010C: DISSOLVED METALS	EPA ME
Analyst NMO		ų į	0.000	2	V	Mercury
12/2/2003	N	mo/L	0 00040	<u>.</u>	EPA METHOD 7470: MERCUKY	EPA ME
Analyst: MAP						. Dicaire
12/1/2003	2	mg/L CaCO3	4.0	230	noie .	Bicarbonat
12/1/2003	8	mg/L CaCO3	4.0	ND	Alkallinty, rouse (to occor)	Alkdillilli
12/1/2003	N	mg/L CaCO3	4.0	230	All Clinity Total (As CaCO3)	AND NE
Analyst: MAP					THON 310 1: ALKALINITY	1
11/18/2003 4:55:49 FM		mg/L	0.50	73		Sulfate
11/18/2003 4:55:49 FM	_	mg/L	0.10	0.16	Nitrogen Nitrate (As N)	Nitroger
17/18/2003 4:55:49 FM		mg/L	0.10	N.	Nitrogen Nitrite (As N)	Nitroger
11/18/2003 4:55:49 FM		mg/L	0.10	35		Chioride
11/18/2003 4:55:40 BM	۔ .	mg/L	0.10	0.33		Fluorida
Analyst: BDH					EPA METHOD 300.0: ANIONS	EDA ME
Date Analyzed	DF	Units	Limit Qual	Result		Analyses
	2	Manny. Aconocc			0311131-01	Lab ID:
FOLIS	A 011				Placitas/Apache	Project:
Conection Date: 11/10/2000 / 00:00 / 20:00	7 1/1 0	Сонеспоп рате:	•		er: 0311131	Lab Order:
70002 0:05:00 AM	11/10	Chent Sample ID. 1 lacims		b	: John Shomaker & Assoc	CLIENT:
	Dlacitae		2			

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

ENERGY LABORATORIES, INC. *2393 Salt Creek Highway (82601)* P.O. Box 3258 * Casper, WY 82602 Toll Free 888.235.0515 * 307.235.0515 * Fax 307.234.1639 * casper@energylab.com

LABORATORY ANALYTICAL REPORT

Client: Hall Environmental

Project: Placitas/Apache

Lab ID: C03110650-001

Client Sample ID: Placitas 0311131-01

Report Date: 12/04/03

Collection Date: 11/18/03 09:05

Date Received: 11/19/03 Matrix: Aqueous

Analyses			
Weam	Pecult		
	Pecult Units		
- 1	Oual		
	RL QCL Method	MCL/	
	Method		
	Analysis Date / By		

Analyses NON-METALS Cyanide, Total Au	Analyses NON-METALS Cyanide, Total Automated	Result	Units Qual	MCL/ RL QCL 0.005	Method E335.3
NON-ME Cyanide, T	TALS otal Automated	N D	mg/L		0.005
PHYSIC./ Color Odor	PHYSICAL PROPERTIES Color Odor	ND NOO 7.67	C.U. Three hold 5 T.O.N. Odor ser 1. S.U. Odor ser 0.	·	5.0 1.00 0.01
pH Surfactants, MBAS	ts, MBAS		mg/L		1.0
METALS Antimony	METALS - DISSOLVED Antimony	0.011	mg/L	*	0.00 1 0.001
Arsenic Selenium Thallium		0.003 ND	mg/L		0.00 1 0.00 1

Report
Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

ND - Not detected at the reporting limit. MCL - Maximum contaminant level.

QA/QC Summary Report

Client: Hall Environmental

Project: Placitas/Apache

Report Date: 12/04/03 Work Order: C03110650

Sample ID: Antimony Arsenic Selenium Thallium	Method:		Sample ID: Surfactants,	Sample Surfacta	Sample Surfacta	Method:	Sample ID:	Sample ID: pH	Method:	9	Sample ID:	Sample ID: Odor	Method:	Color	Sample ID:	Sample ID: Color	Method:		Analyte
J B T JY		1	Sample ID: C03110476-001ADUP Surfactants, MBAS	Sample ID: C03110650-001ADUP Surfactants, MBAS	_{ਛੋ} 🗜	A5540 C	ID: C03110650-001ADUP	ID: MBLK	A4500-H B		D: C03110650-001ADUP	D: MBLK	A2150 B		D: C03110650-001ADUP	5: MBLK			
0,000470 mg/L ND mg/L ND mg/L ND mg/L	Method Blank		Sample Duplicate 0.425 mg/L	Sample Duplicate ND mg/L	Method Blank ND mg/L		Sample Duplicate 7.71 s.u.	Method Blank 5.81 s.u.	•		Sample Duplicate NOO T.O.N.	Method Blank NOO T.O.N.			Sample Duplicate	ND c.u.	Lethod Blank		Result Units
0.00100 0.00100 0.00100 0.00100			1.00	1.00	1.00		0.0100	0.0100			1.00	1.00			5,00	5.00			RL %REC Low Limit
																			High Limit
			ю	0			0.6				0				0				RPD RI
	11/21/03 21:50	Batch: R28832	11/19/03 14:45	11/19/03 14:45 20	11/19/03 14:45	Batch: R28728	11/19/03 14:45		11/19/03 14:45	Batch: R28728	11/20/03 11:30		11/20/03 11:30	Batch: R28747	11/19/03 14:45 10		11/19/03 14:45	Batch: R28728	RPDLimit Qual

QA/QC Summary Report

Report Date: 12/04/03 Work Order: C03110650

Client: Hall Environmental Project: Placitas/Apache

Analyte		Result Units	Units	R.	%REC	Low Limit	RL %REC Low Limit High Limit	RPD RPDLimit Qual
a leady to							Bat	Batch: B_A2003-11-21_4_CN01
Method:	E335.3							
Sample ID	Sample ID: B03110933-001FMS	Matrix Spike			.	8	120	
Cyanide, T	Cyanide, Total Automated	0.112	mg/L	0.00500	717	۶	į	
Sample ID	Sample ID: MBLK-3		ı	2000				
Cyanide, T	Cyanide, Total Automated	ND	mg/L	0.000				
Sample II Cvanide, T	Sample ID: B03110933-001FMSD Cvanide, Total Automated	Matrix Spike Duplicate 0.114 mg/L	mg/L	0.00500	114	80	120	1.9

Hall Environmental Analysis Laboratory

CLIENT:

John Shomaker & Assoc.

Work Order:

0311131

Project:

Placitas/Apache

QC SUMMARY REPORT

Method Blank

sample ID: MB 111803	Batch ID: R10145	Test Code: Run ID:	E300 LC_031118A	Units: mg/L		Analysis Date: 11/18/2003 11:33:10 A SeqNo: 227630	Prep Date:	Qual
Client ID: Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Quai
Fluoride Chloride Nitrogen, Nitrite (As N) Nitrogen, Nitrate (As N) Sulfate	ND ND ND ND ND	0.10 0.10 0.10 0.10 0.50					Prep Date:	·
Sample ID: MBLK Client ID: Analyte	Batch ID: R10218	Test Code: Run ID: PQL	WC_031201	Units: mg/L Ca SPK Ref Val	CO3 %REC	Analysis Date: 12/1/2003 SeqNo: 229379 LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Alkalinity, Total (As CaCO3) Carbonate Bicarbonate	ND ND ND	2.0 2.0 2.0					40/0/00	02
Sample ID: MB-4760 Client ID: Analyte	Batch ID: 4760	Test Code Run ID: PQL	e: SW7470 MI-LA254_0 SPK value	Units: mg/L 31202A SPK Ref Val	%REC	Analysis Date: 12/2/2003 SeqNo: 229697 LowLimit HighLimit RPD Ref Val	Prep Date: 12/2/200	
Mercury	ND	0.00020						
Sample ID: MB-4772 Client ID: Analyte	Batch ID: 4772	Test Cod Run ID: PQI	e: SW7470 MI-LA254_ SPK valu	Units: mg/L 031204A e SPK Ref Val	%REC	Analysis Date: 12/4/2003 SeqNo: 230381 LowLimit HighLimit RPD Ref Val	Prep Date: 12/3/20	
Mercury	ND	0.00020)			•		

B - Analyte detected in the associated Method Blank

				· ············		1
						1
					•	
						
				,		
						•

CLIENT:
Work Order:

John Shomaker & Assoc.

John Shomaker & Asso

Project:

0311131

Placitas/Apache

QC SUMMARY REPORT

Method Blank

Sample ID: MBLK	Batch ID: R10170	Test Code:	SW6010A	Units: mg/L		Analysis	Date: 11/2	0/2003 2:09:52 PM	Prep Da	ite:	
Client ID:		Run ID:	ICP_031120B			SeqNo:	2282	58			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	ND	0.020									
3arium	ND	0.0020				*					
Beryllium	ND	0.0030									
Cadmium	ND	0.0020									1
Calcium	0.2634	1.0			4						3
Chromium	ND	0.0060									
Copper	ND	0.0060									
Iron	ND	0.020									
Lead	ND	0.0050								•	,
Magnesium	0.2086	1.0					•				J
Manganese	ND	0.0020									
Nickel	0.0002292	0.010									J
Silver	ND	0.0050									
Sodium	0.2184	1.0									J
Zinc	0.005876	0.050									J
Sample ID: MB-4703	Batch ID: 4703	Test Code	e: E160.1	Units: mg/L		Analysi	s Date: 11/	24/2003	Prep D	ate: 11/21/20	003
Client ID:		Run ID:	WC_0311240	:		SeqNo	: 228	600			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimi	t RPD Ref Val	%RPD	RPDLimit	Qual
Total Dissolved Solids	ND	1.0									
Sample ID: MBLK	Batch ID: R10144	Test Code	e: E180.1	Units: NTU		Analys	is Date: 11/	18/2003	Prep [Date:	
Client ID:		Run ID:	WC_031118/	A		SeqNo	: 227	622			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimi	t RPD Ref Val	%RPD	RPDLimit	Qual
Turbidity	0.06	0.50								•	.1

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Date: 05-Dec-03

Hall Environmental Analysis Laboratory

CLIENT:

John Shomaker & Assoc.

Work Order:

0311131

Project:

Placitas/Apache

				~~~
$\Omega$	CTIMI	MARY	REP	ORT
$\mathbf{v}$	OCIVIL	ATUNTA T		OIL

Sample Duplicate

Sample ID: 0311131-01A	Batch ID: R10144	Test Code:	E180.1	Units: NTU		Analysis	Date: 11/18	3/2003	Prep Da	ite:	
Client ID: Placitas		Run ID:	WC_031118A	•		SeqNo:	. 22762	25		•	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Turbidity	0.04	0.50	0	0	. 0	0	0	0.05	0	20	J

Date: 05-Dec-03

CLIENT:

John Shomaker & Assoc.

Work Order:

0311131

Project:

Placitas/Apache

QC SUMMARY REPORT

Laboratory Control Spike - generic

Sample ID: LCS 111803	Batch ID: R10145	Test Code:	E300	Units: mg/L		Analysis	Date: 11/18	3/2003 11:49:54 A	Prep Dat	te:	
Client ID:	Datorio, Kioi40	Run ID:	LC_031118A			SeqNo:	22763	31			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride	0.4767	0.10	0.5	0	95.3	90	110	0			
Chloride	4.698	0.10	. 5	0	94.0	90	110	0			
Nitrogen, Nitrite (As N)	0.904	0.10	1	0	90.4	90	110	0			
Nitrogen, Nitrate (As N)	2.331	0.10	2.5	0	93.2	90	110	. 0			
Sulfate	9.4	0.50	10	. 0	94.0	90	110	0	ı		
Sample ID: LCS-4760	Batch ID: 4760	Test Code:	: SW7470	Units: mg/L		Analysis	Date: 12/2	/2003	Prep Da	ate: 12/2/200	13
Client ID:		Run ID:	MI-LA254_0	31202A		SeqNo:	2296	98			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.004754	0.00020	0.005	0	95.1	75.2	-134	0			
Sample ID: LCSD-4760	Batch ID: 4760	Test Code	: SW7470	Units: mg/L		Analysi	s Date: 12/2	2/2003	Prep Da	ate: 12/2/200	)3
Client ID:		Run ID:	MI-LA254_0	31202A		SeqNo	2296	i99	i.	•	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.005068	0.00020	0.005	0	101	75,2	134	0.004754	6.39	0	
Sample ID: LCS-4772	Batch ID: 4772	Test Code	e: SW7470	Units: mg/L		Analysi	s Date: 12/	4/2003	Prep D	ate: 12/3/20	03
Client ID:		Run ID:	MI-LA254_0	31204A		SeqNo	: 230:	382			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimi	t RPD Ref Val	%RPD	RPDLimit	Qua
						75.2	134	1 0		•	

B - Analyte detected in the associated Method Blank

CLIENT:

John Shomaker & Assoc.

Work Order:

0311131

Project:

Placitas/Apache

### QC SUMMARY REPORT

Laboratory Control Spike Duplicate

	Batch ID: 4772	Test Code:	SW7470	Units: mg/L		Analysis	Date: 12/4/	2003	Prep Da	ate: 12/3/2003	3
Sample ID: LCSD-4772 Client ID:	Battirib. 4712		MI-LA254_031			SeqNo:	23038	3			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.005345	0.00020	0.005	0	107	75.2	134	0.004491	17.4	0	
		Test Code:	SW6010A	Units: mg/L		Analysis	Date: 11/20	0/2003 2:11:31 PM	Prep Da	ate:	
Sample ID: LCS	Batch ID: R10170			-		SeqNo:	. 22826				
Client ID:		Run ID:	ICP_031120B			Seq140.					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	0,4865	0.020	0.5	0	97.3	80	120	0	i		
	0,4554	0.0020	0.5	0	91.1	80	120	0			
Barium	0,4774	0.0030	0.5	0	95.5	80	120	0			
Beryllium	0.4693	0.0020	0.5	0	93.9	80	120	0 .			
Cadmium	48.13	1.0	50	0.2634	95.7	80	120	0			
Calcium	0.4653	0.0060	0.5	0	93.1	80	120	0			
Chromium	0.469	0.0060	0.5	0	93.8	80	120	0			
Copper		0.020	0.5	0	93.4	. 80	120	0			
iron	0.4671			0	92.6	80	120				
Lead	0.4628	0.0050	0.5			80	120				
Magnesium	47.19	1.0	50	0.2086	94.0			-			
Manganese	0.4741	0.0020	0.5	0	94.8	80	120				
Nickel	0.444	0.010	0.5	0.0002292	88.8	80	120				
Silver	0.4563	0.0050	0.5	0	91.3		120				
Sodium	46.99	1.0	50	. 0.2184	93.5		120				
Zinc	0.4654	0.050	0.5	0.005876	91.9	80	120	0			

CLIENT:

John Shomaker & Assoc.

Work Order:

0311131

Project:

Placitas/Apache

### QC SUMMARY REPORT

Laboratory Control Spike Duplicate

Sample ID: LCSD	Batch ID: R10170	Test Code:	SW6010A	Units: mg/L		Analysis	Date: 11/20	/2003 2:15:26 PM	Prep Da	te:	
Client ID:		Run ID:	ICP_031120B			SeqNo:	22827	0			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arranyte			0.5	0	95.8	80	120	0.4865	1.59	20	
Aluminum	0.4788	0.020	0.5	0	89.6	. 80	120	0.4554	1.66	20	
Barium	0.4479	0.0020	0.5	0	94.6	80	120	0.4774	0.890	20	
Beryllium	0.4732	0.0030 0.0020	0.5	0	92.1	80	120	0.4693	1.95	20	
Cadmium	0.4603 47.07	1.0	50	0.2634	93.6	80	120	48.13	2.22	20	
Calcium	0.4566	0.0060	0.5	0	91.3	80	120	0.4653	1.89	20	
Chromium	0.4612	0.0060	0.5	. 0	92.2	80	120	0.469	1.67	20	
Copper	0.4598	0.020	0.5	. 0	92.0	80	120	0.4671	1.57	20	
lron 	0.4472	0.0050	0.5	0	89.4	80	120	0.4628	3.43	20	
Lead	44.99	1.0	50	0.2086	89.6	80	120	47.19	4.77	20	
Magnesium	0.4654	0.0020	0.5	0	93.1	80	120	0.4741	1.85	20	
Manganese	0.4366	0.0020	0.5	0.0002292	87.3	. 80	120	0.444	1.68	20	
Nickel		0.0050	0.5	0.0002202	89.9	80	120	0.4563	1.55	20	
Silver	0.4493	1.0	50	0.2184	94.1	80	120	46.99	0.594	20	
Sodium . Zinc	47.27 0.4574	0.050	0.5	0.005876	90.3	80			1.74	20	
· · · · · · · · · · · · · · · · · · ·				United month		Analysi	s Date: 11/2	24/2003	Prep D	ate: 11/21/20	003
Sample ID: LCS-4703	Batch ID: 4703	Test Code		Units: mg/L				•	•		
Client ID:		Run ID:	WC_0311240	•		SeqNo				BBB1 124	0
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit 	RPD Ref Val	%RPD	RPDLimit	Qual
Total Dissolved Solids	950	1.0	1000	0	95.0	. 80	120	0			
Sample ID: LCS1	Batch ID: R10144	Test Code	e: <b>E18</b> 0.1	Units: NTU		Analys	is Date: 11/	18/2003	Prep D	Date:	
Client ID:		Run ID:	WC_031118/	<b>4</b> - 1 - 1 - 1		SeqNo	): <b>227</b>	623		•	
Analyte	Result	PQL	. SPK value	SPK Ref Val	%REC	LowLimi	t HighLimi	t RPD Ref Val	%RPD	RPDLimit	Qua
Turbidity	43.6	0.50	) 42	0.06	104	90	) 11(	) 0	•		

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

CLIENT:

John Shomaker & Assoc.

Work Order:

0311131

Project:

Placitas/Apache

QC SUMMARY REPORT

Laboratory Control Spike - High

Sample ID: LCS2	Batch ID: R10144	Test Code:	E180.1	Units: NTU		Analysis	Date: 11/18	3/2003	Prep Date	e:	
Client ID:		Run ID:	WC_031118A			SeqNo:	22762	24			
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte				0.00	100	90	110	0	<del></del>		
Turbidity	584	0.50	584	0.06	100	90	110	•			,

# Hall Environmental Analysis Laboratory

### Sample Receipt Checklist

						İ
					Corrective Action	Corre
					nts:	Comments
				Regarding	d by:	Contacted by:
	Person contacted	פר		Date contacted:	ntacted	Client contacted
			٠			s.
					VTS:	COMMENTS:
	$4^{\circ} C \pm 2$ Acceptable If given sufficient time to cool.	4° C ± 2 Acceptable If given sufficient tim	2°	ire?	Container∏emp Blank temperature?	Container
	N/A	No	Yes 🗌	ipt?	Water - pH acceptable upon receipt?	Water - pi
	<b>8</b>	Yes	omitted <	dspace? No VOA vials submitted	Water - VOA vials have zero headspace?	Water - V
	]	<b>8</b> □	Yes. ✓	ng time?	All samples received within holding time?	All sample
		N _O	Yes ✓	cated test?	Sufficient sample volume for indicated test?	Sufficient
		<b>8</b>	Yes 🗸		Sample containers intact?	Sample or
•		<b>⊗</b>	Yes ✓	e?	Samples in proper container/bottle?	Samples i
		₽	Yes ✓	ple labels?	Chain of custody agrees with sample labels?	Chain of c
		S. □	Yes ✓	Chain of custody signed when relinquished and received?	ustody signed when reli	Chain of c
		N □	Yes ✓		Chain of custody present?	Chain of c
	N/A	No	Yes □	ottles?	Custody seals intact on sample bottles?	Custody se
Not Shipped	Not Present	<u>8</u>	Yes	ontainer/cooler?	Custody seals intact on shipping container/cooler?	Custody se
]	Not Present	<b>№</b>	Yes 🗸	condition?	Shipping container/cooler in good condition?	Shipping α
		l <del>a</del>	Client drop-off	Carrier name		Matrix
	.		Date		Checklist completed by Signature	Checklist a
		<i>5</i> %>	<i>)</i> //	Mr.		
	у АТ	Received by			Work Order Number 0311131	Work Order I
11/18/2003	e Received:	Date and Time Received:				

						,			····			-,,-										
CHA	IN-OF	-cust	ODY RECORD	NE Other:	LAC 🗖	USACE					<b>!</b>	<b>A</b> 1 49 Alb	VAL 01 H	<b>YS</b> lawki erque	ins N e. Ne	LAE IE, S W M	3 <b>CF</b> uite exico	871	' <b>OR</b> 109	<b>.</b>		
Client:	JSA	Z		Project Name:  Placito	as/A	pac	he					Tel. wv	505 vw.ha	5.349 allenv	5.39 vironi	175 ment	Fax al.co	: 505 om	i.345	5.410	)7	
Address	270	3 <i>B</i>	oodbent Pkry	Project #:								AN	ALY	(S) E	FR	= 1	<b>儿</b> 主					
			. NM 87107	ALL				+ TMB's (8021)	BTEX + MTBE + TPH (Gasoline Only)	(Gas/Diesel)					2, PO4, SO4)	38's (8082)			wa list	Netels		Air Bubbles or Headspace (Y or N)
Phone Fax #:	#:(50; (505	5) 34 ) 34	15-3407 5 ⁻ -9920	Sample Temperatu		, C		+ MTBE + TM	MTBE + TPI	TPH Method 8015B (Gas/Diesel) TDH (Method 418 1)	EDB (Method 504.1)	EDC (Method 8021)	8310 (PNA or PAH)	Metals	Anions (F, Cl, NO ₃ , NO ₂ , PO ₄ , SO ₄ )	8081 Pesticides / PCB's (8082)	(VOA)	8270 (Semi-VOA)	Attac	assolvel,		oles or Head
Date	Time	Matrix	Sample I.D. No.	Number/Volume	Prese	rvative NO ₃	HEAL No.	BTEX +	BTEX +	TPH Met	EDB (ME	EDC (Me	8310 (P	RCRA 8 Metals	Anions (	8081 Pe	8260B (VOA)	8270 (5	See	+ des		Air Bubl
11/18/0	3 9:00	5 090.	Placitas	1/500.4	L	/ // _{US}	0311131-1												X	X		-
				1/250,116		/\																
				1/16 1/500AL		7,3.																
								-														
							·															
								-			-			 			-	-				
Date:	Time:	Relinguis	shed By: (Signerure)	O Recove	d Bay (Sign	naturé) Y	7 ///8/05	Der	marke:	as	31 1		1		100							
/		20/1/	shed By: (Signature)	Receive	d By: (Sign	nature)	) 11158/05 Une 1229	S Their	niai No.	als W	etal	١	pre	Jen	JJK			4		11	18 603	<b>;</b>

### Appendix D.

Summary of wells within a one-mile radius of the Apache Mesa Subdivision that are on file with the NMOSE.

Anneadly D: Wells (	on file witi	h the NN	NOSE that are known to be completed w	ithin a one-mile rac	lius of the A	pache f	liesa Si	ıbdivı	sion			•			Land surface elevation,		
Appendix of World	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									_	Banin data	Finish date	Well denth	Depth to water	ft amsi	Model row	Model column
NMOSE File no.	Use	Div	Owner	Well Number	Source		_	Sec			Begin date 4/16/1977	4/19/1977	320	60		9	8
RG 28434	DOM	3	LANNY J. AND DEBORAH L. LARSON	RG 28434	Shallow	12N	04E		0 0		8/19/2002	8/30/2002	1000	150	5720	.9	10
RG 77927	DOM	3	STEVE & JACKIE WREGE	RG 77927	Shallow	12N	04E	1	1 2	4	10/16/1961	10/20/1961	124	40	•	9	12
RG 06594	DOM	3	TERRY & J. SHANNON JACKSON	RG-06594	-Shallow-	-12N	-04E	1	0 0		10/.10/.180.1	10,20,1001	94	58		9	12
RG 51123 CLW	DOM	3	WILLIAM LEVIN	RG 51123 CLW	Shallow	12N	04E 04E		2 3		8/12/1991	B/15/1991	463	278	5750	10	11
RG 54195	DOM	3	JOHN BRALY	RG 54195	Shallow	12N	04E		2 3		10/19/1994	10/21/1994	320	200	5900	10	- 11
RG 60465	DOM	3	MICHAEL L. OJEDA	RG 60465	Shallow	12N	04E		2 4		5/2/1958	5/5/1958	100	50	5890	10	12
RG 01916	DOM	3	RICHARD LAWRENCE	RG 01916	Shallow	12N	04E		2 4		5/5/1958	5/9/1958	110	65	5890	10	12
RG 02007	DOM	3	B. M. ADAMS	RG 02007	Shallow	12N	04E	1	3 1		10/6/1994	10/6/1994	210	12	5760	11	9
RG 60497	DOM	3	JOHN B. ARANGO	RG 60497	Shallow	12N 12N	04E		1 1		12/3/1991	12/23/1991	830	504	5670		
				RG 54556 X	Shallow	12N	04E		2 2			9/8/1991	684		5740	9	8
RG 54556	MDW	16.737	ORVILE H. (TRUSTEE) UTRUP	RG 54556	Shallow Shallow	13N	04E		3 2			11/26/2002	690	430	5520	3	10
RG 79076	DOM	3	KEVIN S. ALBERT	RG 79076 RG 55077	Shallow	13N	04E	25	4		4/20/1992	6/28/1992	210	110	556D	3	11
RG 55077	DOM	3	EDWARD ALLEN	RG 73262	Shallow	13N	04E	25	4		6/5/2000	6/12/2000	700	515	5560	3	11
RG 73262		٥	JAMES E. BURKE	RG 18159	Shallow	13N	04E	25		0 0	9/13/1971	12/8/1971	490	335		4	11 7
RG 18159	DOM	3	EQUITY MANGEMENT COMPANY	RG 63688	Shallow	13N	04E		2		1/10/1996	1/12/1996	590	470	5400	1	, В
RG 63688	DOM	3	MARY SLOAN	RG 72500	Shallow	13N	04E		2		8/23/2002	11/5/2002	650	340	5410	1	8
RG 72500	MUL	3	LAURIE PATTERSON	RG 04209	Shallow	13N	04E	26	_		2/22/1960	2/23/1960	100	23		3	8 .
RG 04209	DOM	3	LONNIE BROWN	RG 49802	Shallow	13N	04E	26	4	4	2/13/1989	2/24/1989	690	305	5590	4	-
RG 49802	MDW	115	LA MESA WATER CO-OP	RG 49516	Shallow	13N	04E	27		2 4	8/8/1989	8/11/1989	521	172	5250	1	2
RG 49518	IND	359	M.T. INVESTMENT CO.	RG 42562	Shallow	13N	04E		1		9/10/1984	9/14/1984	612	306	5350	5	2
RG 42562	MUL	80	DELASHE CORPORATION	RG 68625	Shallow	13N	04E	34	1		10/30/1997	10/31/1997	420	183	5370	5	2
RG 68625	DOM	3	VICTORIA M. URBAN	RG 72847	Shallow	13N	04E	34		_	9/20/1999	9/29/1999	600	354		6	1
RG 72847		0	SKY MOUNTAINLLC	RG 72547 RG 22598	Shallow	13N	04E	34	n	0 0		3/25/1973	419	368		6	2
RG 22598	DOM	3	JERRY BERGLUND	RG 22596 RG 54168	Shallow	13N	04E	34		3 3		7/19/1991	478	310	5350	6	2
RG 54168	DOM	3	STEPHEN ESPARZA	RG 54185	Shallow	13N	04E	34		3 3		11/22/1991	435	239	5350	6	2
RG 54585	DOM	3	JEANNE VASTA	RG 71724	Shallow	13N	04E	34		4 3		4/13/1999	463	316	5390	6	2
RG 71724		0	SKY MOUNTAIN, LOC		Shallow	13N	04E	34		0 0		10/10/1980	530	385		6	4
RG 34902	DOM	3	JOHN EBERLY	RG 34902		13N	04E	34		0 0		5/26/1989	555	395		6	4
RG 50833	DOM	3	DARREL BUFFINGTON	RG 50833	Shallow	13N	04E			٠.	12/27/2002	1/3/2003	500	390		6	4
RG 79271		0	DAVE HARPER	RG 79271	Shallow	13N	04E			1 2		2/13/1992	490	297	5390	7	1
RG 54846	DOM		DAVE PAFFETT	RG 54846	Shallow	13N	04E			1 2		2/11/1994	440	320	5350	7	1
RG 58850	DOM		TERESA MALDONADO	RG 58850	Shallow	13N	04E			1		12/4/1997	500	200	5380	7	1
RG 68922	MUL	3	LARRY MOORE	RG 68922	Shallow	13N	04E			0 1		6/19/1982	703	481		7	2
RG 38051	DOM		THOMAS J. ASH	RG 38051	Shallow Shallow	13N	04E			4		3/22/2000	510	342	5450	7	2
RG 72820	DOM		DAVID BOLTON	RG 72820 RG 76146	Shallow	13N				2		11/20/2001	455	340	5420	7	2
RG 76146	DOM		TREVOR REED	RG 40388	Shallow	13N					0 9/22/1983	9/26/1983	452	370		7	3
RG 40388	DOM		DON BOOTH	RG 72215	Shallow						2 12/27/1999	12/31/1999	540	378	5410	7	3
RG 72215		0	DAVID BOLTON	RG 55692	Shallow					2	7/20/1992	7/21/1992	590	375	5480	7	4
RG 55692	MUL		TEVOR REED DANIEL J. TALLON	RG 58580	Shallow					2	4 11/29/1993	12/5/1993	600	435	5500	7	4
RG 58580	MUL		DAVID C, BOLTON	RG 67149	Shallow					2	2 7/1/1997	7/9/1997	575	300	5480	7	4
RG 67149	MUL	-	MALTESE KROSS CORPORATION		Shallow				4	2	1 7/13/2000	7/19/2000	601	. 314	546D	7	4
RG 73907	NOG	-	ROBERT D. THOMPSON	RG 18782	Shallow			34	4 3	3	0 11/1/1971	11/15/197	427	296	5450	8	1
RG 18782	COM	-	ALICE WOLF	RG 43849	Shallow			34	4 0	0	0 7/15/1985	7/17/1985	530	393		8	2
RG 43849	MUL		GAIL ANDREWS	RG 72661	Shallow		04E	34	4 3	4	3 8/23/1999	8/25/1999	540	398	5460	. В	2
RG 72661	DON		CANDICE MCGUIRE	RG 70264	Shallow		1 04E	34	4		7/21/1998	7/21/1998	400	221		8	3
RG 70264	DON		CHARLES N. & ARLENE Y. ATWOO		Shallow		04E	34	4 4	3	3 3/29/1999	3/31/1999	500	372	5490	8	3
RG 71433	DOM		DAVID BOLTON	RG 72821	Shallow		048	34	4 4	3	1 9/6/2000	9/8/2000	560	395	5450	8	3
RG 72821	DON			RG 11802	Shallow		N 04E	∃ 34	4 4	4	1 9/21/1964	10/10/196	4 520	450	5460	8	4
RG 11802	וטם			RG 43031	Shallow				4 0	0	0 3/15/1985	3/18/198	535	388		8	4
RG 43031	100		O.H. MILLS	RG 44347	Shallov					4	4 10/10/1985	5 10/10/198	5 603	443	5500	8	. 4
RG 44347	001	., -		RG 58560	Shallov					4			520	400	5460	8	4
RG 58560				RG 32283	Shallov					0 0		4/20/197	621	440		5	5
RG 32283	DO			RG 46599	Shallov					0	-		6 625	500		. 5	5
RG 46599	DO			RG 54634	Shallov					1 2				457	5480	5	5
RG 54634	DO			RG 57191	Shallov					1 1			620	410	5470	5	5
RG 57191	DO	nvi 3	DOM MOON	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				•							•		

				40750	Shallow	13N	04E	35 (	0 0	1	2/8/1988	2/13/1988	565	325			6
RG 48759		3	BRAD & CONNIE GREER	,,,					1 2 4		3/8/1991	3/10/1991	660	410	5570	5	6
RG 53424	DOM	3	LOS VECINOS WATER SYSTEM	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		13N			2 2 3		6/27/1994	6/30/1994	603	340	5520	5	6
RG 59797	DOM	3	KIM WROBLEWSKI			13N			1 2 2		12/12/1900	12/14/1994	580	324	5440	5	7
RG 60701	DOM	3	MAX E. OR DIANE J. SATCHELL	,,		13N			0 0 0		8/26/1987	9/1/1987	545	430		5	7
RG-48073	DOM-	3	JAMES E. GREEN			13N			2 1	_	8/1/1996	8/4/1996	-560	318	<del></del>	5	- <del>/</del> -
RG 64580	DOM	3	SAM JONES		•	13N			001	n	1/22/1983	1/23/1983	600	470		5	8
RG 39211	DOM	3	JACK ROBERTS	RG 39211					2 1		2/24/1992	2/26/1992	585	260	5500	5	-
RG 54920	DOM	3	CHRISTINE DESMOND	RG 54920	Shallow	13N			2 2		9/27/1996	10/2/1995	595	390	5480	5	В
RG 65209	SAN	3	DONALD & SHIRLEY CATES	RG 65209	Shallow	13N			00		10/21/1985	10/8/1985	850	700		6	5
RG 44484	DOM	3	HAROLD BOWERS	RG 44484	Shallow	13N			-		11/16/1987	11/20/1987	601	345	5460	6	5
RG 48424	MDW 1	1.05	HOMESTEADS EAST WATER COOP	RG 48424	Shallow	13N			1 3	•	9/18/1995	9/19/1995	620	410	5500	6	5
RG 62805		3	DEL PACKWOOD	RG 62805	Shallow	13N			13		12/10/1998	12/21/1998	610	447	5480	6	5
RG 70146		ō	BOB AND MADELINE NASBY	RG 70146	Shallow	13N	04E		1 3			1/8/1982	600	460		6	. 6
RG 37344	DOM	3	O.D. MAES	RG 37344	Shallow	13N	04E		0 0		12/29/1981		475	260	5460	6	6.
	DOM	3	CHUCK T. SCHAKEL	RG 58464	Shallow	13N	04E		1 3		4/7/1994	4/10/1994	598	435	5470	6	6
RG 58464	MUL	3	ROBERT J. THORNTON	RG 70482	Shallow	13N	04E		1 4		8/19/1998	8/25/1998		326	• • • • • • • • • • • • • • • • • • • •	6	7
RG 70482		3	HERB SCHMIDT	RG 37165	Shallow	13N	04E		0 0		11/17/1981	11/25/1981	770	90	5500	6	7
RG 37165	DOM	-	JOHN BORKERT	RG 45102	Shallow	13N	04E	35	23	2	3/11/1986	3/12/1986	181		5530	6	7
RG 45102	DOM	0	TED MOSER	RG 72458	Shallow	13N	04E	35	23	1	2/21/2000	3/3/2000	605	300	5480	Ř	7
RG 72458	DOM	3	SHAWN & PATRICIA WALLWORK	RG 75056	Shallow	13N	04E	35	2 3		2/23/2001	3/10/2001	600	450	0400	6	Ř
RG 75056	DOM	3		RG 44733	Shallow	13N	04E	35	0 0	0	10/29/1985	11/8/1985	580	450		7	5
RG 44733	DOM	3	JAMES A. & BETSY K. HORKOVICH	RG 67590	Shallow	13N	04E	35	3 1	1	6/13/1997	6/19/1997	720	388	5500	<u>'</u>	
RG 67590	DOM	3	STEVEN K. KINNEY	RG 68855	Shallow	13N	04E		3 1	2	12/22/1997	1/7/1998	738	448	5480		5
RG 68855	MUL	3	PAUL GABALDON	RG 72457	Shallow	13N	D4E		3 1		11/17/1999	11/30/1999	605	300	5520	<u>′</u>	2
RG 72457		0	PHILLIP BAXTER		Shallow	13N	04E	35			10/27/2003	11/1/2003	760	446		7	6
RG 81338		0	APACHE MESA LLC	RG 81338	Shallow	13N	04E		3 2	4	11/9/1995	11/15/1995	650	480	5540	7	-
RG 63457	DOM	3	JAMES R. OR ANNE LYNCH	RG 63457		13N	04E	35	0 0		4/16/1981	4/25/1981	650	385		7	7
RG 36424	DOM	3	MASON R. HISE	RG 36424	Shallow Shallow	13N	04E		4 1		10/16/1990	10/19/1990	570	410	5560	7	á
RG 53108	DOM	3	DONALD DUSZYNSKI	RG 53108		13N	04E	35	0 0	_	7/21/1988	8/5/1988	700	485		7	-
RG 49616	DOM	3	BAYARD ROBERTS	RG 49616	Shallow	13N	04E		3 3		3/5/1985	3/7/1985	390	240	5500	8	5
RG 43248 CL	W DON	3	MEL HARRISON	RG 43248 CLW	Shallow		04E	35	3 4		12/8/1993	12/10/1993	633	490	5540	8	6
RG 32505	DOM	3	MARK BARON	RG 32505 X	Shallow	13N	04E	35	3 4		1/13/1994	1/19/1994	96	23	5530	8	6
RG 58639	DOM	3	DOROTHY JACKMAN	RG 58639	Shallow	13N		35	0 0		10/16/1985	10/28/1985	700	450		8	7
RG 44638	MUL	3	JON & NANCY MELVILLE	RG 44638	Shallow	13N	04E 04E	35	0 0		7/17/1990	7/18/1990	630	300		8	7
RG 52641	DOM	3	WAYNE BRUMMETT	RG 52641	Shallow	13N			0 0		8/30/1983	9/10/1983	842	490		8	8
RG 40042	DOM	3	GENE & DIANA WATSON	RG 40042	Shallow	13N	04E	35			3/2/1993	3/5/1993	675	478	5700	8	8
RG 56592	MUL	.3	JON MC CALLISTER	RG 56592	Shallow	13N	04E	35			3/20/1996	3/27/1996	560	320	5700	8	8
RG 64202	DOM	3	PHYLLIS KNIGHT	RG 64202	Shallow	13N	04E		4 4			9/8/2002	660	427	5600	8	8
RG 77710	DOM	3	JESSE W. SUMMERS	RG 77710	Shallow	13N	04E	35			9/4/2002	2/13/1964	501	132	5560	5	9
RG 10032	NOT	0	RANCHOS DE PLACITAS SANITATION	RG 10032	Shallow	13N	04E	36			1/22/1964	4/16/1994	596	335	5520	5	9
RG 59333	SAN	3	JOHN MCCALLISTER	RG 59333	Shallow	13N	04E	36		1	4/14/1994			180	0020	6	10
RG 05100	DOM	3	N. J. EICH	RG 05100	Shallow	13N	04E	36			8/21/1960	9/1/1960	225			6	11
RG 05104	DOM	3	JOHN OREB JR.	RG 05104	Shallow	13N	04E	36			3/25/1961	3/28/1961	212	160	5610	7	9
RG 67635	MUL	3	HOMEOWNERS' ASSOCIATION CORRA	. RG 67635	Shallow	13N	04E	36	3 1	4	6/9/1997	6/22/1997	370	30	2010	<u>'</u>	10
RG 05692	DOM	3	U.C. LUFT	RG 05692	Shallow	13N	04E	36			3/29/1981	4/6/1961	140	50		7	11
		3	MRS. C. R. SEBASTIAN	RG 05569	Shallow	13N	04E	36			3/2/1961	3/20/1961	178	140		, ~	11
RG 05569	DOM	3	RONALD & PENNY PATTON	RG 59899	Shallow	13N		36	4 .	1	7/5/1900	7/6/1994	440	. 39	5690	<u>′</u>	
RG 59899	DOM	3	KAYEMAN, INC.	RG 69946	Shallow	13N		36				7/23/1998	280	45	5700	7	11
RG 69946		-		RG 74768	Shallow	13N		36		1 4	10/16/2000	10/24/2000	238	56	5700	7	11
RG 74768	DOM	3	ABRAHAM J. AND JANET E. GOLDBE	RG 78589	Shallow	13N		36				12/12/2002	400	50	5700	7.	12
RG 78589	DOM	3	RICHARD A. & JUDY WILSON	KG 10308	Ottanow	1014	U-1	Ju		- '							

# Appendix D: 100-year drawdowns in wells within a one-mile radius of Apache Mesa Subdivision as a result of pumping subdivision wells

RG-550//, RG-13202	RG-18159	RG-79076	RG-72500	RG-5104	RG-63688	RG-78589	RG-4209	RG-49516	RG-5100	RG-59899, RG-5508, NG-55075, TT	RG-59333, KG-10054 RG-74768	RG-4980Z	RG-5692	RG-6594, RG-511/23	RG-2007, RG-1916	RG-60465	RG-65209, RG-39211, KG-54920	RG-67635	RG-77927	RG-68625, RG-42562	RG-72847	RG-44773	RG-48073, RG-64560	RG-22590,	RG-54634, RG-46599, NG-54168, RG-54585	RG-60701, RG-48/59, KG-53424, KG-57191	•	RG-58850, RG-54846	RG-49616	RG-76146, RG-38051, RG-72820	-	RG-18782	RG-54556, RG-28434	RG-45102, RG-72458, RG-75056, RG-37103	RG-34902, RG-50833, RG-79271		RG-37344, RG-70482, RG-58464	•		RG-53108, RG-36424	RG-44638, RG-52641	RG-72821, RG-70264, RG-/1433	RG-63457	RG-73907, RG-67149, RG-55692, RG-56569	RG-58639, RG-32505	RG-67590, RG-68855, RG-72457, RG-61556	RG-43031, RG-58560, RG-11802, RG-4338	Apache Mesa Subdivision wells, RG-43240	completed "	Wells on file with the NMOSE known to be		as a result of pulliphing	Appendix by 100 year mineral and a specific of pull
	90	07	о <del>б</del>	ಽ	023	బ	035	2	으	022	034	014	08	033	046	047	048	013	032	045	9	015	o21	012	016	010	011	049	024	ည	025	043	036	044	020	017	037	019	018	) )	030	042	၀ မ	029	027	041	o28	039	040	well	observation	Model	dns paire
	13N	13N	13N	13N	13N	13N	13N	130	13N	13N	13N	13N	13N	13N	12N	12N	12N	13N	13N	12N	13N	13N	13N	13N	13N	13N	13N	12N	13N	13N	13N	13N	13N	12N	13N	13 <b>N</b>	13N	13N	13N	13N	13N	13N	13N	13N	13N	13N	13N	13N	13N	Township			DIVISION WE
	4E	4E	4. T	1 fr	4 11	1 f	. 4	ìπ	ה ה	1 1	Î Î	1 11 11	<del>1</del> f	<b>4</b> i	î f	<u>4</u>	4 <u>4</u>	4E	: <del>A</del>	m	4 T	i fi	4 1 i	ìπ	î î	i ii	î î	£	<b>4</b>	<b>4</b>	Æ	4E	∰	<b>4</b> €	<b>4</b> ⊞	#	<b>4</b> E	Æ	<b>4</b> €	<b>4</b> E	4E	<b>4</b> E	#	4E	£	<b>4</b> €	#	<del>1</del> n	#	Range			ā
	 22	2 1,	2 5	2 6	န္က မ	2 G	သ င	3 6	ر ا ور	27	بر م	36	25 C	ນຸດ		- د	٠ -	Ų	ა <u>დ</u>	g -	·	ب د د	ء <u>د</u>		χ, <b>‡</b>	2 U	ည္က	<u>,</u>	. 34	္ကေၾ	34	္ဌင္ဌ	3 4	نہ ؟	. <u>&amp;</u>	34	¥ :	္တ	35	34	35	. U	<u></u> 4 β	် မ	2 4	33	<u>ن</u> د	ω 4	္ ၾ	Section	;		
												0.52	0.64	0.77	0.52	0.58	0.60	0.83	0.75	0.92	0.60	0.87	0.89	0.76	0.84	0.89	0.88	0.70	0.76	0.79	079	S	0.92	0.04	0.09	0.92	0.90	0.92	0.95	o C. 4	0.90	30.5	1 02	0.97	1 01	0 :-	1.00	1.09	1.00	1 36	Tourdown	35.XT	