:

GEOTECHNICAL ENGINEERING SERVICES, JOB NO. 1-31001 APACHE MESA SUBDIVISION PLACITAS, NEW MEXICO

PREPARED FOR:
MARK GOODWIN & ASSOCIATES, P.A.

8528 CALLE ALAMEDA NE LBUQUERQUE, JEW MEXICO

05) 471-1101 AX (505) 471-2245 GEO-TEST, INC.

204 RICHARDS LANE
ANTA FE,

NEW MEXICO

LAS CRUCES
NEW MEXICO

(505) 857-0933 ^cAX (505) 857-0803

505) 526-6260 AX (505) 523-1660

December 9, 2003 File No. 1-31001

Mark Goodwin & Associates, P.A. PO Box 90606 Albuquerque, NM 87199

ATTN: Mr. Joe David Montano

Geotechnical Engineering Services Report Apache Mesa Subdivision Placitas, New Mexico

RE

Dear Mr. Montano:

on grade floor design, as well as criteria for site grading. investigation, laboratory testing and recommendations for foundation and slab above referenced project. The report contains the results of our field Submitted herein is the Geotechnical Engineering Services Report for the

questions, please contact me in the Albuquerque Office at (505) 857-0933 It has been a pleasure to serve you on this project. If you should have any

Sincerely:

GEO-TEST, INC.

Charles M. Miller, P.E.

CHILST-3U

ENGINEER

6018

CHRALES M. MICHOLES

<u>;</u>

ADESSION P

8528 CALLE ALAMEDA NE LBUQUERQUE, IEW MEXICO

05) 471-1101 AX (505) 471-2245

NEW MEXICO

GEO-TEST, INC.

(505) 857-0933 FAX (505) 857-0803

805-A LAS VEGAS CT. AS CRUCES

NEXICO

505) 526-6260 AX (505) 523-1660

TABLE OF CONTENTS

28		TABULATION OF LABORATORY TEST DATA
10	:	BORING LOGS
9		BORING LOCATION MAP
. 7	:	CLOSURE
. 7	•	FOUNDATION REVIEW AND INSPECTION
: ့စ		MOISTURE PROTECTION
: ნ		CONSTRUCTION EXCAVATION
: 5		RETAINING WALLS
: 4		SITE-GRADING
: 4		SLABS ON GRADE
: ω		LATERAL LOADS
: ယ	:	FOUNDATIONS
: 2		CONCLUSIONS
: 2		SUBSURFACE SOIL CONDITIONS
: : N	:	SITE SEISMICITY
: :		LABORATORY TESTING
: :		FIELD EXPLORATION
	:	PROPOSED CONSTRUCTION
		INTRODUCTION

JEO-IEST

INTRODUCTION

the Boring Location Map, Figure 1, in Placitas, New Mexico. for the proposed Apache Mesa Subdivision. The site is located as shown on This report presents results of the geotechnical engineering services performed

The objective of this investigation is to:

- Determine the nature and engineering properties of the subsurface soils.
- 7 foundations and floor slabs, and criteria for site grading. Provide recommendations for the general design and construction of

preparation of this report. laboratory testing of the samples, performing an engineering analysis and The services included subsurface exploration, representative soil sampling,

PROPOSED CONSTRUCTION

structural loads. The site is currently undeveloped and it is covered with native vegetation. residences. It is understood that the subdivision is to be developed with single family Conventional construction is anticipated with light to moderate

should be notified for review and revision of recommendations contained Should structural details vary significantly from those outlined above, this firm

FIELD EXPLORATION

penetration test hammer. or less utilizing an open tube split barrel sampler driven by a standard truck mounted drill rig using 5.25 inch diameter continuous flight hollowstem presented in a following section of this report. Drilling was accomplished by a were continuously logged during the drilling operation. Boring Logs are of borings are shown on the accompanying Boring Location Map. 6 to 20 feet below existing grade across the site. The approximate locations Eighteen exploratory borings were drilled to depths ranging from approximately Subsurface materials were sampled in the borings at five foot intervals The borings

JEO-IEST

LABORATORY TESTING

and Atterberg Limits Tests were performed to aid in soil classification. evaluate the various soil deposits both with depth and laterally. Sieve Analysis engineering properties of the soils. Moisture contents were determined to Representative samples were tested in the laboratory to determine certain

the samples for a longer period of time. days after the date of this report unless we receive a specific request to retain Test Results and on the Boring Logs. Results of the laboratory tests are presented in the Tabulation of Laboratory All soil samples will be discarded 30

SITE SEISMICITY

Profile Type of S_D should be used for design. As determined by the 1997 UBC, the site is located in Seismic Zone 2B. A Soil

SUBSURFACE SOIL CONDITIONS

strata descriptions. support conventional foundations. Please refer to the Boring Logs for detailed when wetted. The dense silty sands are relatively stable and would adequately subjected to moisture increases. The loose silty sands will decrease in volume dense, slightly silty to silty or clayey sand with varying amounts of gravel and As encountered in the exploratory borings, soils underlying the site are erratic and vary with depth and laterally. The soils generally consist of loose to very cobble. Some of the clayey sands are medium plasticity and will swell when Refusal to auger drilling was encountered in Borings #7, #8, #13, and Groundwater was not encountered in any of the borings

CONCLUSIONS

carefully followed, as well as the moisture protection provisions requirements outlined in the Site Grading section of this report should be tensioned slabs on grade for foundation construction. advantageous to simplify earthwork and inspection requirements and use post earthwork specifications for different lots. The variable soil conditions would require differing foundation types and/or However, it may be most The

JEO-IEST

FOUNDATIONS

from overall differential soil expansion or consolidation. site to final grade. cantilever areas of localized soil volume change or to resist building movement (BRAB Type III) bearing on native soils or engineered fill placed to bring the The structure should be supported on a post-tensioned slab on grade system This system would provide the structural rigidity to span or

with the method presented in "Design and Construction of Post-Tensioned Slabs-on-Ground" published by the Post-Tensioning Institute: The following criteria is recommended for design of the slabs in accordance

- Allowable soil bearing pressure 2,000 psf
- 7 Edge moisture variation distance center lift - 5 feet edge lift - 2.5 feet
- ω Differential soil movement edge lift - 1.0 in. center lift - 2.0 in
- Slab-Subgrade friction coefficient

in this report is crucial to the performance of the post tensioned system. desiccate during construction. isolated from the slab and the moisture protection of subgrade soils mentioned Clayey subgrade beneath foundations should not be allowed to dry and All utilities penetrating the slab should be

LATERAL LOADS

325 pounds per cubic foot should be used for analysis. section of this report, a passive soil resistance equivalent to a fluid weighing the foundation and soil. With backfill as recommended in the site grading 0.40 should be used for computing the lateral resistance between the base of the footing base and by passive earth resistance. Resistance to lateral forces can be assumed to be provided by soil friction on A coefficient of friction of

SLABS ON GRADE

passing the No. 200 sieve. base should consist of 1 inch maximum size aggregate with less than 15% course of gravel should be placed on properly prepared subgrade. The gravel supported on grade. the grading requirements are complied with, concrete slabs may be However, if required as a working surface, a 4 inch

barrier to minimize differential cracking and curling of floor slabs, placed beneath the slabs with 2 inches of clean non-plastic sand overlying the intrusion totally. If this is critical, an impervious membrane barrier should be The gravel base will act as a capillary barrier, but will not eliminate moisture

SITE-GRADING

engineering supervision and in accordance with the following: recommended that all structural fill and backfill be placed and compacted under specifications to provide a basis for quality control during site grading. It is The following general guidelines should be included in the project construction

- **=** prior to placement of any fill, the building areas should be densified. After stripping the site and making all required site over excavations and This will include a minimum area of 3 feet outside the building area.
- 7 density. Vibrations should be controlled or eliminated as necessary to avoid damage to nearby structures. surface to a minimum of 95 percent of the ASTM D-1557 maximum dry conditioning to optimum moisture content ±2% and compacting the scarification of the subgrade to a depth of 8 Densification for other site preparation areas shall consist of inches, moisture
- ω compacted fill. The site can then be brought to final grade with properly placed and

4 material, as determined in accordance with ASTM D-422, should be as and contain no rocks larger than 6 inches. Gradation of the backfill All backfill material shall be non expansive, free of vegetation and debris below are met or imported fill meeting the same criteria may be used. Blended on-site materials may be reused providing the criteria outlined

JEO-JEST

follows

No. 200	No. 4	3 inch	Size
0 - 50	60 - 100	90 - 100	Percent Passing

- 5 accordance with ASTM D-4318. The plasticity index should be no greater than 12 when tested in
- <u></u> accordance with the ASTM D-1557 test method. minimum of 95 percent of the maximum dry density determined in compaction equipment. All compaction of fill or backfill shall be to a Fill or backfill, consisting of soil approved by the Geotechnical Engineer, placed in controlled compacted layers with approved
- ソ necessary until 95 percent compaction is obtained. effort shall be made with adjustment of the moisture content as compaction. If less than 95 percent is indicated, additional compaction carried on during fill and backfill placement by the Geotechnical Engineer to assist the contractor in obtaining the required degree of 1556 method or ASTM D-2922. Observation and field tests shall be Tests for degree of compaction shall be determined by the ASTM D-

RETAINING WALLS

should be designed for at-rest pressures of 60 pounds per square foot per foot of depth. square foot per foot of depth. Walls which are restrained from movement be designed to resist an active lateral earth pressure equal to 35 pounds per can deflect laterally a distance equal to 0.001 times the height of the wall can Retaining walls which are free to rotate or translate such that the top of the wall

native soils compacted in accordance with the criteria outlined in the minimum of 2 feet of non expansive structural fill or densified non expansive Retaining walls may be founded on conventional spread footings bearing on a

designed for a maximum soil bearing pressure of 2000 pounds per square foot Conclusions and Site Grading sections of this report. Footings should be

base of the wall and routed to a sump or to a positive gravity drain. installed by attaching to the backside of a subgrade wall prior to backfilling composite drainage systems such as Miradrain or equivalent can be readily The drainage layer would be connected to a perforated collector pipe at the To prevent the buildup of hydrostatic pressures, adequate weep holes or These pressures assume no build up of hydrostatic pressures behind the wall.

migration of fines into the drain. the granular fill. A filter fabric should encapsulate the granular fill to control drainage pipe would be placed at the bottom of the wall to collect water from draining granular fill can be placed behind the walls. A perforated As an alternative, a conventional french drain type system comprised of free

the structure at a minimum 2 percent slope. water, the ground surface behind the wall should be sloped to drain away from To minimize the potential for saturation of the backfill by infiltration of surface

in excess of the earth pressure, particularly over the upper portions of the wall of the wall. The use of heavier equipment could apply lateral pressures well compaction equipment within a zone of about 5 feet horizontally from the back During backfilling, the contractor should be limited to the use of hand operated

CONSTRUCTION EXCAVATION

applicable state or local regulations. and constructed in accordance with 29 CFR 1926, Subpart P, horizontal to 1 vertical. Excavated slopes for foundation and utility construction should be designed Excavated slopes should not exceed 2 and any

MOISTURE PROTECTION

away from the structure. trenches leading into the structures should be backfilled with compacted fill constructed adjacent to the exterior foundations where possible. saturation of the foundation soils. Precautions should be taken during and after construction to minimize Concrete walks and asphalt pavement should be Positive drainage should be established All utility

water lines to reduce the possibility of future subsurface saturation. Special care should be taken during installation of the subfloor sewer and

FOUNDATION REVIEW AND INSPECTION

specifications will be noted in writing by the Geotechnical Engineer. are applicable to the final design. Review of the final design drawings and specifications in order to determine whether the recommendations in this report in the design of this project. It is recommended that the Geotechnical Engineer This report has been prepared to aid in the evaluation of this site and to assist provided the opportunity to review the final design drawings and

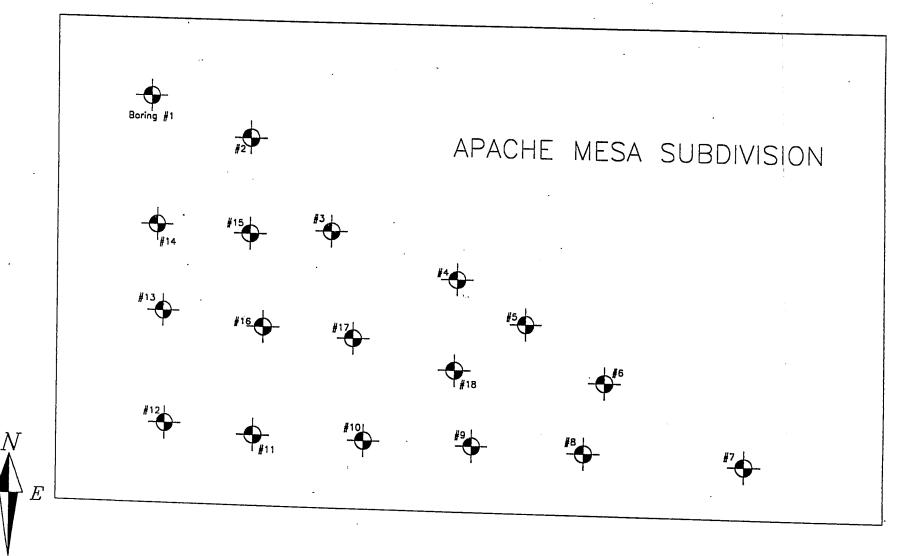
construction of this that suitable fill soils are placed upon competent materials and properly retained to presented herein, it is recommended that the Geotechnical Engineer be conditions encountered during construction and to confirm recommendations Variations from soil conditions presented herein may be encountered during compacted and foundation elements penetrate the recommended soils. Observation and testing should be performed during construction to confirm perform sufficient review during construction of this project. In order to permit correlation between the

CLOSURE

Our conclusions, recommendations and opinions presented herein are:

- ۳ Based upon our evaluation and interpretation of the findings of the field and laboratory program.
- 7 Based upon an interpolation of soil conditions between and beyond the explorations
- ၑ Subject construction. ರ confirmation 읔 the conditions encountered during
- 4 during construction. Based upon the assumption that sufficient observation will be provided
- 5 Prepared ⋽. accordance with generally accepted professional

EO-IEST


geotechnical engineering principles and practice

should be notified. construction that appear to be different than indicated by this report, this office performance of work on this project. subsurface conditions to be encountered and the procedures to be used in the investigation as he deems necessary to satisfy himself as to the surface and We make no other warranty, either express or implied. Any person using this report for bidding or construction purposes should perform such independent If conditions are encountered during

EO-IEST

BORING LOCATION MAP

Not to Scale

Apoche Mesa Subdivision Placitas, New Mexico Job No. 1-31001

Figure 1

DEO-IEST

GEOTECHNICAL ENGINEERING, ENVIRONMENTAL MATERIAL TESTING SANTA FE - ALBUQUERQUE - LAS CRUCES

Date: 10/09/03

Elevation:

Project No: 1-31001

Type: 5" OD HSA

LOG OF TEST BORINGS

GROUNDWATER DEPTH

<u>0</u>

During Drilling: None

After 24 Hours:

					termoral termoral.	
25-	On .	10		111 1	DEPTH (Feet)	
					LOG	
					SAMPLE INTERVAL	
		SS	SS	SS	TYPE	
		46	25	40	N, BLOWS/FT	إ [
		4 .	1.4	4.4	MOISTURE (%)	DAMPLE
					DRY DENSITY (pcf)	
		MS		MS	usc	
	STOPPED AUGER AT 14' 6" SAMPLER REFUSAL AT 14' 10"	SILTY SAND WITH GRAVEL AND COBBLES non-plastic, very dense, slightly moist, brown	non-plastic, dense, slightly moist, brown	SILTY SAND	DESCRIPTION	SUBSURFACE PROFILE
					N blows/ft 20 40 60 80	<u>, I , , , , , , , , , , , , , , , , , ,</u>

LEGEND

SS - Split Spoon
AMSL - Above Mean Sea Level
AC - Auger Cuttings
CS - Continuous Sampler
CAL - Modified California Sampler
UD - Undisturbed

Date: 10/09/03

Elevation:

Project No: 1-31001

Type: 5" OD HSA

LOG OF TEST BORINGS

<u>N</u>0: N

> GROUNDWATER DEPTH

During Drilling: None

After 24 Hours:

20	15-	-111	10	-1111	О 1	11.		DEPTH (I	Feet)	
		\ \	<u>`\</u>		\	\ \	\	LOG		
								SAMPLE INTERVA	L	
	SS		SS		SS	SS		TYPE		
	35		34	-	46	50		N, BLOW	/S/FT	s,
	4.9		4.2		4.0	2.9		MOISTUI (%)	RE	SAMPLE
								DRY DEI (pcf)	VSITY	
					SC-SM			USC		
	SIOPPED SAMPLER AT 16	STOPPED AUGER AT 14'6"		tine grained, low plasticity to non-plastic, dense, slightly moist, brown	CLAYEY SILTY SAND			DESCRIPTION		SUBSURFACE PROFILE
						1		N blows/ft 20 40 60 80		•

LEGEND

SS - Split Spoon AMSL - Above Mean Sea Level AC - Auger Cuttings CS - Continuous Sampler CAL - Modified California Sampler UD - Undisturbed

m の

Project: Apache Mesa Subdivision

Date: 10/09/03 Project No: 1-31001

Elevation:

Type: 5" OD HSA

LOG OF TEST BORINGS

NO: ယ

17

GROUNDWATER DEPTH

During Drilling: None

After 24 Hours:

	25-		20	-i	- 10-		ςı.			DEPTH (Feet)	
										LOG	
•										SAMPLE INTERVAL	
			SS	SS	SS		SS	SS		TYPE	
			99	36	31		20	11		N, BLOWS/FT	t/S
			1.2	6.2	4.3		3.7	3.7		MOISTURE (%)	SAMPLE
									-	DRY DENSITY (pcf)	
LEGEND			MS			MS				USC	
T D		STOPPED AUGER AT 19'6" STOPPED SAMPLER AT 20'	SILTY SAND WITH GRAVEL AND COBBLES non-plastic, very dense, slightly moist, brown			SILTY SAND fine grained, some clay, some gravel, low plasticity to non-plastic, medium dense to dense, slightly moist, brown				DESCRIPTION	SUBSURFACE PROFILE
										N blows/ft 20 40 60 80	

SS - Split Spoon AMSL - Above Mean Sea Level AC - Auger Cuttings CS - Continuous Sampler CAL - Modified California Sampler UD - Undisturbed

Date: 10/09/03

Elevation:

Project No: 1-31001

Type: 5" OD HSA

LOG OF TEST BORINGS

<u>N</u>O: 4

. .

GROUNDWATER DEPTH

During Drilling: None

After 24 Hours:

	20	15-		10-		٥٦ ا			DEPT	H (Feet)	
							\	\	LOG		
						स्तिक स्त्रीत क इ.स.च्या			SAMP INTER	LE VAL	
		SS		SS		SS	SS		TYPE		
		31		29		23	21		N, BL	OWS/FT	S,
		4.5		5.2		5.5	6.5		MOIS (%)	TURE	SAMPLE
									DRY (pcf)	DENSITY	
LEGEND					N.			SC	usc		
VD		מועד רבה מאייו בבוי אין יס	STOPPED AUGER AT 14' 6"		SILTY SAND fine grained, some clay, some gravel, low plasticity to non-plastic, medium dense to dense, slightly moist, brown		Sing in a second	CLAYEY SAND medium plasticity, medium dense, slightly moist brown		DESCRIPTION	SUBSURFACE PROFILE
								0	blows/ft 20 40 60 80	Z	

. . .

SS - Split Spoon AW AC - Auger Cuttings (CAL - Modified California Sampler

AMSL - Above Mean Sea Level
CS - Continuous Sampler
bler UD - Undisturbed

Elevation: Date: 10/09/03

Type: 5" OD HSA Project No: 1-31001

LOG OF TEST BORINGS

<u>N</u> Ċ

> GROUNDWATER DEPTH

During Drilling: None

After 24 Hours:

SAMPLE SUBSURFACE PROFILE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SS 16 6.0 DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION CLAYEY SAND fine grained, crack medium dense to dense, slightly moist, brown STOPPED SAMPLER AT 14'6" STOPPED SAMPLER AT 14'6"	25	15	· ·	10 		5 5			DEPTH (Feet)	
SS SS SS TYPE SAMPLE SS SS SS TYPE SS SS SS SS SS SS SS						\ \	\	\	LOG	
37 39 16 16 N, BLOWS/FT 2.8 5.0 5.2 6 MOISTURE (%) DRY DENSITY (pcf) SMPL S					٠.				SAMPLE INTERVAL	
2.8 5.0 5.0 MOISTURE (%) DRY DENSITY (pcf) SO USC	·	SS		SS		SS	SS		TYPE	
DRY DENSITY (pcf) So USC		37		39		18	16		N, BLOWS/FT	١,
usc usc		2.8		5.0		5.2	6.0		MOISTURE (%)	AMPLE
									DRY DENSITY (pcf)	
DESCRIPTION CLAYEY SAND fine grained, some gravel, medium plasticity to non-plastic, medium dense to dense, slightly moist, brown STOPPED AUGER AT 14' 6" STOPPED SAMPLER AT 16'						SC			USC	
		STOPPED SAMPLER AT 16'	STOPPED AUGER AT 14' 6"		plasticity to non-plastic, medium dense to dense, slightly moist, brown	CLAYEY SAND			DESCRIPTION	SUBSURFACE PROFILE

LEGEND

SS - Split Spoon
AMSL - Above Mean Sea Level
AC - Auger Cuttings
CS - Continuous Sampler
CAL - Modified California Sampler
UD - Undisturbed

Date: 10/09/03

Type: 5" OD HSA Project No: 1-31001

LOG OF TEST BORINGS

NO: ٥

> GROUNDWATER DEPTH

Elevation:

During Drilling: None After 24 Hours:

							-,		**************************************	Name and States of States	
	30 25 .	20-	·	57	 10 		ۍ ن ا		, ,	DEPTH (Feet)	
				````\			<u>\</u>	\	\	LOG	
			200							SAMPLE INTERVAL	
				SS	SS		SS	SS	•	TYPĘ	
				99	50		43	48		N, BLOWS/FT	့ မွ
				1.8	4.6	9	4.1	3.2		MOISTURE (%)	SAMPLE
_										DRY DENSITY (pcf)	
FGEND							SC			usc	
				STOPPED AUGER AT 14' 6" STOPPED SAMPLER AT 16'		plasticity to non-plastic, dense to very dense, slightly moist, brown	CLAYEY SAND			DESCRIPTION	SUBSURFACE PROFILE
					 					N blows/ft 20 40 60 80	7

LEGEND

SS - Split Spoon
AMSL - Above Mean Sea Level
AC - Auger Cuttings
CS - Continuous Sampler
CAL - Modified California Sampler
UD - Undisturbed

**Project No: 1-31001** 

Type: 5" OD HSA

Elevation:

Date: 10/09/03

LOG OF TEST BORINGS

NO:

1

GROUNDWATER DEPTH

**During Drilling: None** 

After 24 Hours:

	·						 	,				barrer system	* ************************************	۰. ا
30	25-	<u>1</u>	20-	<u> </u>	15	·	 10		<b>5</b> 1			DEPTH	ł (Feet)	
												LOG		
										*******		SAMPI INTER	-E VAL	
									SS	SS	-	TYPE		
	•		<del></del>						>100	41		N, BLC	WS/FT	ş
					<del></del>				1.7	1.5		MOIST (%)	URE	SAMPLE
			•		·						•	DRY D (pcf)	ENSITY	
						·				SP-SM		USC		
								AUGER REFUSAL AT 7'		non-plastic, dense to very dense, slightly moist, brown	SLIGHTLY SILTY SAND WITH GRAVEL AND COBBLES		DESCRIPTION	SUBSURFACE PROFILE
												N blows/ft 20 40 60 80		

LEGEND

SS - Split Spoon AM AC - Auger Cuttings CAL - Modified California Sampler

AMSL - Above Mean Sea Level CS - Continuous Sampler Iler UD - Undisturbed

Date: 10/09/03

Elevation:

Project No: 1-31001

Type: 5" OD HSA

LOG OF TEST BORINGS

NO: 00

> GROUNDWATER DEPTH

**During Drilling: None** 

After 24 Hours:

								Neise minerale — Neusanter Å	
	26	<u>.,</u> .,					ı r	DEPTH (Feet)	
					\	\	\ \	LOG	
	·				1.5			SAMPLE INTERVAL	
					SS	SS		TYPE	
					11	19		N, BLOWS/FT	S
		·			6.6	4.6		MOISTURE (%)	SAMPLE
			·					DRY DENSITY (pcf)	
)				SP-SM		SC		usc	
				SLIGHTLY SILTY SAND WITH GRAVEL AND COBBLES non-plastic, very dense, slightly moist, brown ALIGER REFLISAL AT O'		plasticity to non-plastic, medium dense, slightly moist, brown	fine grained some gravel medium  CLAYEY SAND	DESCRIPTION	SUBSURFACE PROFILE
						1		N blows/ft 20 40 60 80	

LEGEND

SS - Split Spoon AMSL - Above Mean Sea Level AC - Auger Cuttings CS - Continuous Sampler CAL - Modified California Sampler UD - Undisturbed

## DEO-EST

Project: Apache Mesa Subdivision

Date: 10/09/03

Elevation:

Project No: 1-31001 Type: 5" OD HSA

LOG OF TEST BORINGS

NO: 9

GROUNDWATER DEPTH

GROUN

After 24 Hours:

**During Drilling: None** 

·····			· · · · · · · · · · · · · · · · · · ·							. <u>.</u>		DERTH (Face)	
30-	25-		} !	1	h .		16		Ch .		<del> </del>	DEPTH (Feet)	
			<u> </u>									SAMPLE INTERVAL	
			-		SS		SS		SS	SS		TYPE	
					99		99		52	16 .		N, BLOWS/FT	y S
					3.7		4.6		2.6	2.1		MOISTURE (%)	SAMPLE
		•										DRY DENSITY (pcf)	1
						-			MS			usc	
						STOPPED AUGER AT 14' 6" STOPPED SAMPLER AT 15'		medium dense to very dense, slignly moist, brown	fine grained, some gravel, non-plastic,			DESCRIPTION	SUBSURFACE PROFILE
					-						P	N blows/ft 20 40 60 80	

LEGEND

SS - Split Spoon
AC - Auger Cuttings
CAL - Modified California Sampler

AMSL - Above Mean Sea Level CS - Continuous Sampler ia Sampler UD - Undisturbed

Project No: 1-31001

Type: 5" OD HSA

Elevation:

Date: 10/09/03

## LOG OF TEST BORINGS

Ö

10

GROUNDWATER DEPTH

**During Drilling: None** 

After 24 Hours:

20	13. 51	. 10	<b>6</b> 1		DEPTH (Feet)	
•					LOG	
					SAMPLE INTERVAL	
	SS	SS	SS	SS	TYPE	
	45	39	39	8	N, BLOWS/FT	ş
	4.9	4.5	5.9	2.2	MOISTURE (%)	SAMPLE
					DRY DENSITY (pcf)	
				MS	usc	
	STOPPED AUGER AT 14' 6" STOPPED SAMPLER AT 16'		Silt Lense at 4.5' - 6.0'	SILTY SAND fine grained, some gravel, non-plastic, medium dense to dense, slightly moist, brown	DESCRIPTION	SUBSURFACE PROFILE
					N blows/ft 20 40 60 80	<u> </u>

LEGEND

SS - Split Spoon
AC - Auger Cuttings
CAL - Modified California Sampler

AMSL - Above Mean Sea Level CS - Continuous Sampler JD - Undisturbed

Date: 10/10/03 **Project: Apache Mesa Subdivision** 

Elevation:

Type: 5" OD HSA Project No: 1-31001

LOG OF TEST BORINGS

. 0

=

i

GROUNDWATER DEPTH

**During Drilling: None** 

After 24 Hours:

-	20	15		10	<u> </u>	O1	<del>!!</del>	 DEPTH (Feet	)
ļ		****	\\	1		\	1	LOG	•
-								SAMPLE INTERVAL	
-		SS		SS		SS	SS	TYPE	
		38		50		27	. 9	N, BLOWS/F	
		3.5		2.7		3.0	2.6	MOISTURE (%)	SAMPLE
								DRY DENSIT (pcf)	Y
-						SC-SM		USC	
		SIOPPED SAMPLEX AT TO	STOPPED AUGER AT 14'6"		fine grained, some gravel, non-plastic, loose to dense, slightly moist, brown	CLAYEY SILTY SAND		DESCRIPTION	SUBSURFACE PROFILE
								N blows/ft 20 40 60 80	

LEGEND

SS - Split Spoon AN AC - Auger Cuttings CAL - Modified California Sampler

AMSL - Above Mean Sea Level CS - Continuous Sampler oler UD - Undisturbed

Date: 10/10/03

Elevation:

Project No: 1-31001

Type: 5" OD HSA

LOG OF TEST BORINGS

77.1

Ö

2

GROUNDWATER DEPTH

**During Drilling: None** 

After 24 Hours:

30	25	20	15		10	_111	٥.			DEPTH	(Feet)	
				**************************************				\		LOG		
								45. W		SAMPL	Æ VAL	
			SS		SS		SS	SS	•	TYPE	•	
	<del></del>		77		36		22	69		N, BLC	WS/FT	Ş
			2.7		5.5		1.6	7.5		MOIST (%)	URE	SAMPLE
										DRY D (pcf)	ENSITY	
						SM			sc	usc		
				STOPPED AUGER AT 14' 6"	DIOWII	SILTY SAND fine grained, some clay, some gravel, low plasticity to non-plastic, medium dense to very dense, slightly moist,			CLAYEY SAND fine grained, medium plasticity, very dense, moist, brown		DESCRIPTION	
										20 40 60 80	z	1

SS - Split Spoon
AM
AC - Auger Cuttings
CAL - Modified California Sampler AMSL - Above Mean Sea Level CS - Continuous Sampler JD - Undisturbed

Date: 10/10/03

Type: 5" OD HSA

Elevation:

Project No: 1-31001

LOG OF TEST BORINGS

GROUNDWATER DEPTH

N 0

**During Drilling: None** 

After 24 Hours:

	25    	L	20	15-	 10			<b>5</b> 1	•		DEPTH (Fee	t)
								-			LOG	
											SAMPLE INTERVAL	
					 			SS	SS		TYPE	
					 			99	57		N, BLOWS/F	-Τ ,
						•		1.8	2.3		MOISTURE (%)	VAMPLE
											DRY DENSI' (pcf)	ΤΥ
									MS		USC	
,							AUGER REFUSAL AT 7'		non-plastic, very dense, slightly moist, brown	SILTY SAND WITH GRAVEL AND COBBLES	DESCRIPTION	SUBSURFACE PROFILE
		<u>i</u>									N blows/ft 20 40 60 80	

LEGEND

SS - Split Spoon AMSL - Above Mean Sea Level AC - Auger Cuttings CS - Continuous Sampler CAL - Modified California Sampler UD - Undisturbed

Date: 10/10/03

Type: 5" OD HSA Project No: 1-31001

## LOG OF TEST BORINGS

<u>N</u>O:

14

Elevation:

GROUNDWATER

DEPTH

**During Drilling: None** 

After 24 Hours:

	20	15-		10		رت ا	. ,		DEPTH	ł (Feet)	·
						\	<u> </u>	\	LOG		
									SAMP INTER	LE VAL	
		SS		SS		SS	SS		TYPE		
		39		31		32	19	·	N, BL	OWS/FT	ş
		2.2		2.2		3.0	5.7		MOIST	TURE	SAMPLE
									DRY (pcf)	DENSITY	
LEGEND					MS		SC		usc		
S		OI OFFED SAMIFFER AT TO	STOPPED AUGER AT 14' 6"	brown	SILTY SAND fine grained, some gravel, non-plastic,		dense, slightly moist, brown	CLAYEY SAND		DESCRIPTION	SUBSURFÀCE PROFILE
•									blows/ft 20 40 60 80	Z	

LEGEND

SS - Split Spoon AMSL - Above Mean Sea Level AC - Auger Cuttings CS - Continuous Sampler CAL - Modified California Sampler UD - Undisturbed



Date: 10/10/03

Project No: 1-31001

Type: 5" OD HSA

## LOG OF TEST BORINGS

ö

GROUNDWATER DEPTH

**.** 

Elevation:

During Drilling: None After 24 Hours:

30	25-	20	 On L	10-	55 ,		DEPTH (Feet)	
•	<u> </u>				\		LOG	
		·				The many	SAMPLE INTERVAL	
·····						SS	TYPE	
						99	N, BLOWS/FT	ွ
		·				2.1	MOISTURE (%)	SAMPLE
	·						DRY DENSITY (pcf)	
						SC	usc	
					AUGER REFUSAL AT 6'	CLAYEY SAND WITH GRAVEL AND COBBLES low plasticity, very dense, slightly moist, brown	DESCRIPTION	SUBSURFACE PROFILE
					 		N blows/ft 20 40 60 80	

LEGEND

SS - Split Spoon AMSL - Above Mean Sea Level AC - Auger Cuttings CS - Continuous Sampler CAL - Modified California Sampler UD - Undisturbed

Date: 10/10/03

Project No: 1-31001

Type: 5" OD HSA

## LOG OF TEST BORINGS

Elevation:

GROUNDWATER DEPTH

6

**During Drilling: None** 

After 24 Hours:

		<del></del>								_
	20-	55	· · · · · · · · · · · · · · · · · · ·	10 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		<b>5</b> 1	1 1		DEPTH (Feet)	
		200	1	\	\	<u>\</u>	\	\	LOG	
						v di			SAMPLE INTERVAL	
		SS		SS		SS	SS		TYPE	
		51		30		25	11		N, BLOWS/FT	S/
		4.7		5.1	·	5.0	6.9		MOISTURE (%)	SAMPLE
•									DRY DENSITY (pcf)	
						SC			usc	
,		STOPPED SAMPLER AT 16'	STOPPED AUGER AT 14' 6"		plasticity, medium dense to dense, slightly moist, brown	CLAYEY SAND			DESCRIPTION	SUBSURFACE PROFILE
		0							N blows/ft 20 40 60 80	

. .

LEGEND

SS - Split Spoon
AMSL - Above Mean Sea Level
AC - Auger Cuttings
CS - Continuous Sampler
CAL - Modified California Sampler
UD - Undisturbed

Date: 10/10/03

Type: 5" OD HSA Project No: 1-31001

LOG OF TEST BORINGS

NO: 17

GROUNDWATER DEPTH

Elevation:

**During Drilling: None** 

After 24 Hours:

		·					~~		Saper-security.	·i.,	
	20	15		10	1 1 1	C1			DEPTH	(Feet)	
			\ \\	\	\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	· \	LOG		
						STATE OF THE STATE			SAMPL INTER\	.E /AL	
		SS		ss		SS	SS		TYPE		
		32		32		29	13		N, BLO	WS/FT	ş
		3.4		3.1		3.4	2.5	•	MOISTI	JRE	SAMPLE
_									DRY DE (pcf)	ENSITY	
						SC-SM			usc		
		STOPPED SAMPLER AT 16"	STOPPED AUGER AT 14' 6"		plasticity, medium dense to dense, slightly moist, brown	CLAYEY SILTY SAND			DESCRIPTION	MOLEGIACO	SUBSURFACE PROFILE
		 							N blows/ft 20 40 60 80	<u> </u>	

LEGEND

Ш.

SS - Split Spoon
AMSL - Above Mean Sea Level
AC - Auger Cuttings
CS - Continuous Sampler
CAL - Modified California Sampler
UD - Undisturbed

Date: 10/10/03

Project No: 1-31001

Type: 5" OD HSA

## LOG OF TEST BORINGS

<u>N</u>O:

GROUNDWATER DEPTH Elevation:

After 24 Hours:

**During Drilling: None** 

20	15	10	<b>Ch</b>	DEPTH (Feet)
	1		\ \ \	LOG
				SAMPLE INTERVAL
	SS	SS	SS	TYPE
	42	37	19	N, BLOWS/FT ട്ട
	4.1	3.8	2.6	MOISTURE (%)
				DRY DENSITY (pcf)
			sc	usc
	STOPPED AUGER AT 14' 6" STOPPED SAMPLER AT 16'	plasticity, medium dense to dense, slightly moist, brown	CLAYEY SAND fine grained. some gravel. low	DESCRIPTION
				N blows/ft 20 40 60 80

. . .

LEGEND

SS - Split Spoon AMSL - Above Mean Sea Level AC - Auger Cuttings CS - Continuous Sampler CAL - Modified California Sampler UD - Undisturbed

# TABULATION OF LABORATORY TEST RESULTS APACHE MESA SUBDIVISION PLACITAS, NEW MEXICO

		I	1		<u> </u>	1	Ī	¶ <u> </u>	<del></del>		<del>-</del>	<del>_</del>	<u> </u>	T	_	ŢŢ.	<del></del>		· <u>·</u>	· ·	· 		· .						. 1			
	9	8	8	7	7	6	6	6	6	ۍ _.	5	5	5	4	4	4	4	ω	ω	ω	3	ώ	2	2	2	2					HOLE	
	2.5	Ŋ	2.5	5	2.5	15	10	5	2.5	15	10	5	2.5	15	10	5	2.5	20	15	10	5	2.5	15	10	O)	2.5	15	10	ڻ ن	2.5	DEPTH (FEET)	
		SC			SP-SM				SC			SC					SC					SM			SC-SM					SM	UNIFIED	
	2.1	6.6	4.6	1.7	1.5	1.8	4.6	4.1	3.2	2.8	5.0	5.2	6.0	4.5	5.2	5.5	6.5	1.2	6.2	4.3	3.7	3.7	4.9	4.2	4.0	2.9	4.4	4.1	1.4	4.4	% MOIST	
		28			₹ N				28			35					41					N			24					₹ V	£E.	
		13			NP P				17			19					21					N P			7					Z P	PI	
		48.8			11.6				35.2			39.5					43.3					27.7			34.3					43.6	1 NO	
		69			17				49			62					60					7 41			3 51					ļ	0 NO	
		79			27				56			71					72					51			64				•		) NO	
		89			55				67			85					89					74			85						÷ N	P
		94			75				72			92					96					87			93					91	NO 4	SIEVE ANALYSIS PERCENT PASSING
		97			86			·	76			97					100					96			100					93	3/8"	NALY PAS
		98		,	90				80			98										100				$\dashv$				95	1/2"	SIS
		100			100				88		.	100	1											_	_	$\dashv$	_			5 100	2" 3/4"	
					1				100		$\dashv$		+	+			-				1					$\dashv$	-			ŏ		
			_		7	+			+	-	$\dashv$		-	+	_		$\dashv$	-		-		+	+	_	$\dashv$	+	4		_	_	-д	
=					===										- 1	- 1	- 1		ı	- 1	- 1		1		1	- 1	- 1	- 1	- 1		Σ, <b>-</b>	

1-31001

	ļ		·····					[			•		:	,	1	'l ·				, ,		,			41									eminal as of depth of the co	er oskusen kronzekoza
1-31001	18	18	18	17	17	17	17	16	16	16	16	15	14	14	14	12	13	13	12	12	12	12	=	11	=	11	10	<del>1</del> 0	10	10	9	9	ဖ	HOLE	
	10	C)	2.5	15	10	Ch	2.5	15	10	5	2.5	2.5	15	10	5	2.5	5	2.5	15_	10	ഗ	2.5	15	10	<b>U</b> 1	2.5	15	<del>-</del>	-01	2.5	15	10	ڻ ن	F DEPTH	
		SC					SC-SM			SC		SC			SC		SM					SC				SC-SM			ML				S	TH UNIFIED	
	-			_		<u> </u>	≤																			MS			_				MS	ASS	
	3.8	4.1	2.6	3.4	3.1	3.4	2.5	4.7	5.1	5.0	6.9	2.1	2.2	2.2	3.0	5.7	1.8	2.3	2.7	5.5	1.6	7.5	3.5	2.7	3.0	2.6	4.9	4.5	5.9	2.2	3.7	4.6	2.6	% MOIST	
		23		_			20			27		23			23		₹					35				23			N N				N N	F	
		8					6		<u>.</u>	1		8			8		중					19				4			N P				N N	P	
		42.2					27.5			45.3		19.1			25.3		12.0					39.7				28.9			51.4				28.3	1 NO	
		70					43			64		28			39		21					57				42			83			-	64	100 100	
		80					50			75		35			49		26					77				48			94				71	NO 40	
		93					68			86		67			75		43					94				66			99				82	47	
		99			-		86			91		93			92		70					99				89		•						00	SIEVE ANALYSIS PERCENT PASSING
		<b>1</b> 0					94			95		100			99	_	89				$\dashv$	100			-	$\dashv$			100		-		91	4 NO	: ANAL
							95		-	98	$\dashv$				100	1	92			_	_	ŏ		-		98					-		95	3/8"	YSIS
ŀ	1	$\dashv$			-		_				$\dashv$	$\dashv$			ō							_				8							96	1/2"	
	_		-				8			<del>1</del> 00	_		_	-		_	00																100	3/4"	
	+	-	_	_	-		_			_	_	_				_																		1"	
_																																		75	

# TABULATION OF LABORATORY TEST RESULTS APACHE MESA SUBDIVISION PLACITAS, NEW MEXICO

Ø,

												==			<u> </u>							_		.4				_		
8	8	7	7	6	6	6	6	5	5	51	51	4	4	4	4	3	ω	ω	ω	ω	2	2	2	2		_			HOLE TEST	
Cŋ	2.5	-C1—	2.5	15	10	<u>ე</u>	2.5	15	10	5	2.5	15	10	5	2.5	20	15	10	51	2.5	15	10	ഗ	2.5	15	10	ហ	2.5	DEPTH (FEET)	
sċ			SP-SM				SC			SC					SC					SM			SC-SM					SM	UNIFIED	
6.6	4.6	1.7	1.5	1.8	4.6	4.1	3.2	2.8	5.0	5.2	6.0	4.5	5.2	5.5	6.5	1.2	6.2	4.3	3.7	3.7	4.9	4.2	4.0	2.9	4.4	4.1	1.4	4.4	% MOIST	
28			N.				28			35					41					S.			24					N/	11	
<u>პ</u>			NP P				17			19					21					중			7					₹ F	D	
48.8			11.6				35.2			39.5	,				43.3				<b> </b>	27.7			34.3					43.6	200 200	
69			17				49			62					60					41			51					71	100 00	
79			27				56			71					72					51			64					81	4 N	
89			55				67			85					89					74			85					87	10 10	PE
94			75				72			92					96					87			93					91	4 NO	SIEVE ANALYSI PERCENT PASSI
97			86				76			97					100					96			100					93	3/8"	IALYS PASSI
98			90				80			98										18				<del> </del>				95	1/2"	IS ING
100	,		100				88			100													-					100	3/4"	
				ļ			100																						7.	
																													1/2"	

1-31001

1-31001					1	· - I	:	<u>                                     </u>	! [						<u>[</u>	1 1	··				·.			<u>.</u>					· · · · · · · · · · · · · · · · · · ·	i	· · ·		<u> </u>	<u></u>		~ /	, go
001	18	18	17	17	17	17	16	16	16	16	15	4	14	14	14	13	<b>1</b> ω	12	12	12	12	11	11	1	<u> </u>	10	10	10	ő	9	9	9		TEST E		-	
<del></del>	5	2.5	5	10	51	2.5	15	10	თ	2.5	2.5	15	10	ហ	2.5	Ċī	2.5	15	10	5	2.5	15	10	ъ	2.5	15	10	<b>ე</b>	2.5	<u>5</u>	10	ຫ	2.5	DEPTH (FEET)		,~	
-	sc					SC-SM			SC		SC			SC		SM					SC				SC-SM			M.				SM		UNIFIED			
	4.1	2.6	3.4	3.1	3.4	2.5	4.7	5.1	5.0	6.9	2.1	2.2	2.2	3.0	5.7	1.8	2.3	2.7	5.5	1.6	7.5	3.5	2.7	3.0	2.6	4.9	4.5	5.9	2.2	3.7	4.6	2.6	2.1	% MOIST			,
	23					20			27		23			23		N/					35				23			N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/				Z	<u> </u>	. #			
	8		<u> </u>			6			=======================================		8		<u> </u>	8		¥					19				4			목		<u> </u>		N _D		22			
	42.2					27.5			45.3		19.1			25.3		12.0		·			39.7				28.9			51.4				28.3		200			
	70					43			64		28			39		21					57				42			83				64		190 190			
	80					50			75		35			49		26					77				48			94				7.1		40 40			
	93					68			86		67			75		43					94				66			99				82		5 N	PER		
	99					86			91		93			92		70					99				89			100				91		4 NO	SIEVE ANALYSIS PERCENT PASSING		
	100					94			95		100			99		89					100				98							95		3/8"	ALYSIS 'ASSIN		
						95			98					100		92									100							8	3	1/2"			
						100			100							100																<u> </u>		3/4"			
`		-																								1.								_			
																								-										3			

	LL	L	L					g P L	Succession and	e National descripted	المارية	e en en en en	and the second s		- 1	I :I			0
1-31001										د در				18		TEST		4 [*]	
<del>, </del>		<del></del>		•	· <del>-</del>		 							15	10	DEPTH		.~	-
										_					S	UNIFIED			
															1 18			ď	
				•						•				4.1	3.8	WOIST		· ·	
																13			
													P	-		PI N			:
													LL = LIQUID LIMIT PI = PLASTICITY INDEX NV = NO VALUE NP = NON PLASTIC			NO NO 200 100			
													N PLAS		_	<del> </del>			
													TC EDEX		\ 	40 A			
										. •						00 NO	SIEV		
																4 4	SIEVE ANALYSIS PERCENT PASSING		
						٠								-		3/8"	YSIS		
														.		- N			
								·					•			3/4"			
											·					-			
																1/2"			